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How can covariance structures of two groups differ?

Univariate:
» Homoscedastic or heteroscedastic (nothing in between)

Multivariate case:
o Flury’s hierarchy (1988):
@ Equality =, = %,
@ Proportionality X; = pX,
@ Common principal components
@ Partial common principal components
B Heterogeneity



What are CPCs?

Flury's hierarchy: Equality Flury's hierarchy: Proportionality
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Principal component analysis (PCA):
Y = BAB'
Common principal components (CPC):
¥, = BA\B’

3y = BAyB’

Partial common principal components (CPC(q)):

= BlAlBll where B, = [b1 500 bq 5 bq+1(1) 000 bp(l)]
Dy = BQAQBlz By = [b1 . bq : bq+1(2) ... bp(2)]



|dentifying the CPCs

Table 7.9. Decomposition of X2, in Head Dimension Example (k =2,p = 6)

Model ] ) . -}: AIC for
Higher Lower df Higher Modecl

4229 89.78
5.13 49.49

Equality Proportionality ~ 42.29
Proportionality CpPC 25.66

|_
5

CPC CPC(h 15.12 0 1.51 33.82%
5

1.34 38.70

CPC(1) Unrelated 6.70
- 420

Unrelated

Equality Unrelated 89.78 21
*Minimum AIC.

x? statistics not independent, and depend on multivariate
normality assumption

AIC not formal hypothesis test
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|dentifying the CPCs

Different approach (Krzanowski 1979)

a’'b = cosf

Inspect dot products from pairwise combinations of all p
eigenvectors from the &k groups
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|dentifying the CPCs

Simulated CPC data: £ = 2, p = 5, n = 200

Dot product values for the permutations

Dot products

2 5 0.99
4 4 0.98
3 1 0.97
5 2 0.96
1 3 0.96
5 3 0.20
1 2 0.19
3 2 0.19
4 3 0.17
1 1 0.15
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|dentifying the CPCs

Eigenvectors 141 Eigenvectors 1 &2 Eigenvectors 1 &3 Eigenvectors 1 &4 Eigenvectors 1 &5
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Simulated
CPC data: s
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D | P | —

00 02 04 06 08 10 00 02 04 06 08 10 02 04 06 08 10 00 02 04 05 08 10

s
|
ot
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n =
bootstrap pommen
reps = 1000 Eigenvectors 5.1 Eigenvectors 583 Eigonvectors 584 Eigonvectors 585
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Theo Pepler tpepler@sun.ac.za On the identification of CPCs 8/23



|dentifying the CPCs

Simulated CPC(2) data: £ = 2, p =5, n = 200

Dot product values for the permutations

Dot products
0.99
0.96
0.69
0.69
0.68
0.64
0.63
0.59
0.39
0.38
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|dentifying the CPCs

Simulated
CPC(2) data:

n = 200

bootstrap
reps = 1000
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|dentifying the CPCs

Dot products: 1000 bootstrap replications

Frequency

D

Dot product
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Bootstrap method:
@ Find median and 2.5 percentile of bootstrap distribution

® D = median — 2.5 percentile
® Then if
e median > 0.71

AND

e median+ D > 1
the two eigenvectors are deemed to be common



Simulation study
e Groups: k =2

Variables: p =5
Sample sizes: n; = 50,100, 200, 500, 1000

Eigenvalues: poorly/moderately/well separated

Normality: multivariate normal/non-normal

Covariance structures: CPC, CPC(3), CPC(1),
heterogeneity



Number of components correctly identified (%)

AIC Y Bootstrap

Sample size

n = 50 32 27 31
n = 100 41 29 36
n = 200 46 33 47
n = 500 50 32 61
n = 1000 50 35 74
Data

Normal 50 34 54
Non-normal 38 28 46
Total 44 31 0]

All methods fared slightly worse with non-normal data than with
normal data.



Number of components correctly identified (%)

AIC x? Bootstrap

Eigenvalue

separation

Poor (10%) 25 26 26
Moderate (50%) 49 32 53
Good (90%) 57 35 71
Covariance structure

CPC 45 28 51
CPC(3) 34 20 28
CPC(1) 43 45 48
Heterogeneous 54 - 74
Total 4 31 50




Flury’s AIC method:
» too greedy, especially for CPC(q)
« variability sometimes quite large
« best for small sample sizes

» performs well for full CPC with poorly separated
eigenvalues



Flury’s x? method:
» poor performance overall
e large variability

» performed surprisingly well for CPC(1) with poorly
separated eigenvalues



Bootstrap method:
« best for large sample sizes
« low variability
» does not perform well with poorly separated eigenvalues

» best for well separated eigenvalues, especially for
non-normal data



Swiss heads data: k =2,p=6
Sample sizes: n; = 200, no = 59

Eigenvalues:
» Males: 66.3, 34.4, 19.6, 14.3, 13.0, 6.8

« Females: 73.5, 59.6, 42.0, 28.0, 15.6, 10.9
(well separated in both groups)

Normality:
» Box’s M test: p < 0.0001 (not multivariate normal)



Swiss heads data

Dot products: Swiss heads data

Dot products
0.84
0.81
0.77
0.74
0.69
0.61
0.61
0.49
0.49
0.46
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Verdict on the number of common eigenvectors?

e Flury’s AIC: 4
o Flury’s x2: 3
» Bootstrap method: 0



o For smaller sample sizes and/or poorly separated
eigenvalues
— use Flury’s AIC

e For larger sample sizes and well separated eigenvalues
— use Bootstrap method

« Do not use Flury’s x> method
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