On the identification of common principal components

Theo Pepler Genetics Department University of Stellenbosch

10 July 2012

Theo Pepler tpepler@sun.ac.za On the identification of CPCs 1/23

What are common principal components (CPCs)?

How can covariance structures of two groups differ?

Univariate:

Homoscedastic or heteroscedastic (nothing in between)

Multivariate case:

- Flury's hierarchy (1988):
 - 1 Equality $\Sigma_1 = \Sigma_2$
 - 2 Proportionality $\Sigma_1 = \rho \Sigma_2$
 - 3 Common principal components
 - 4 Partial common principal components
 - 5 Heterogeneity

What are CPCs?

Theo Pepler tp

tpepler@sun.ac.za

On the identification of CPCs 3/23

What are CPCs?

Principal component analysis (PCA):

 $\Sigma = B\Lambda B'$

Common principal components (CPC):

 $\Sigma_1 = \overline{B \Lambda_1 B'}$

 $\Sigma_2 = B \Lambda_2 B'$

Partial common principal components (CPC(q)):

 $egin{array}{lll} \Sigma_1 = oldsymbol{B}_1 \Lambda_1 oldsymbol{B}_1' & ext{where} & oldsymbol{B}_1 = [oldsymbol{b}_1 \dots oldsymbol{b}_q : oldsymbol{b}_{q+1(1)} \dots oldsymbol{b}_{p(1)}] \ \Sigma_2 = oldsymbol{B}_2 \Lambda_2 oldsymbol{B}_2' & oldsymbol{B}_2 = [oldsymbol{b}_1 \dots oldsymbol{b}_q : oldsymbol{b}_{q+1(2)} \dots oldsymbol{b}_{p(2)}] \end{array}$

Model		X ²	df	X ²	AIC for
Higher	Lower			dſ	Higher Model
Equality	Proportionality	42.29	1	42.29	89.78
Proportionality	CPC	25.66	5	5.13	49.49
CPC	CPC(1)	15.12	10	1.51	33.82*
CPC(1)	Unrelated	6.70	5	1.34	38.70
Unrelated					42.0
Equality	Unrelated	89.78	21		
*Minimum AIC.					

- χ^2 statistics not *independent*, and depend on *multivariate normality assumption*
- AIC not formal hypothesis test

Different approach (Krzanowski 1979)

 Inspect dot products from pairwise combinations of all p eigenvectors from the k groups

Simulated CPC data: k = 2, p = 5, n = 200

Simulated CPC data: k = 2p = 5

n = 200

bootstrap reps = 1000

Simulated CPC(2) data: k = 2, p = 5, n = 200

Simulated CPC(2) data: k=2 $p = \underline{5}$ n = 200bootstrap reps = 1000

Theo Pepler tpepler@sun.ac.za On the identification of CPCs 11/23

Bootstrap method:

1 Find median and 2.5^{th} percentile of bootstrap distribution

- 2 $D = \text{median} 2.5^{th}$ percentile
- 3 Then if
 - median > 0.71

AND

• median $+ D \ge 1$

the two eigenvectors are deemed to be common

Simulation study

- Groups: *k* = 2
- Variables: p = 5
- Sample sizes: $n_i = 50, 100, 200, 500, 1000$
- Eigenvalues: poorly/moderately/well separated
- Normality: multivariate normal/non-normal
- Covariance structures: CPC, CPC(3), CPC(1), heterogeneity

Number of components correctly identified (%)

	AIC	χ^2	Bootstrap
Sample size			
n = 50	32	27	31
n = 100	41	29	36
n = 200	46	33	47
n = 500	50	32	61
n = 1000	50	35	74
Data			
Normal	50	34	54
Non-normal	38	28	46
Total	44	31	50

All methods fared slightly worse with non-normal data than with normal data.

Number of components correctly identified (%)

	AIC	χ^2	Bootstrap
Eigenvalue			
separation			
Poor (10%)	25	26	26
Moderate (50%)	49	32	53
Good (90%)	57	35	71
Covariance structure			
CPC	45	28	51
CPC(3)	34	20	28
CPC(1)	43	45	48
Heterogeneous	54	_	74
Total	44	31	50

Flury's AIC method:

- too greedy, especially for CPC(q)
- variability sometimes quite large
- best for small sample sizes
- performs well for full CPC with poorly separated eigenvalues

Flury's χ^2 method:

- poor performance overall
- large variability
- performed surprisingly well for CPC(1) with poorly separated eigenvalues

Bootstrap method:

- best for large sample sizes
- low variability
- does not perform well with poorly separated eigenvalues
- best for well separated eigenvalues, especially for non-normal data

Swiss heads data

Swiss heads data: k = 2, p = 6

Sample sizes: $n_1 = 200, n_2 = 59$

Eigenvalues:

- Males: 66.3, 34.4, 19.6, 14.3, 13.0, 6.8
- Females: 73.5, 59.6, 42.0, 28.0, 15.6, 10.9 (well separated in both groups)

Normality:

• Box's M test: p < 0.0001 (*not* multivariate normal)

Swiss heads data

Verdict on the number of common eigenvectors?

- Flury's AIC: 4
- Flury's χ^2 : 3
- Bootstrap method: 0

Conclusions

- For smaller sample sizes and/or poorly separated eigenvalues
 → use Flury's AIC
- For larger sample sizes and well separated eigenvalues
 → use Bootstrap method
- Do not use Flury's χ^2 method

Sources

- P. Diaconis and B. Efron. *Computer-intensive methods in statistics*. Sci. Am.; (United States), 248(5): 116-130, 1983.
- B. Efron and R. Tibshirani. An introduction to the bootstrap. Monographs on Statistics and Applied Probability. Chapman & Hall, 1993.
- B. Flury. Common principal components and related multivariate models. Wiley series in probability and mathematical statistics. Wiley, 1988.
- W. J. Krzanowski. *Between-groups comparison of principal components*. Journal of the American Statistical Association, 74(367): pp. 703-707, 1979.