Common principal components

Theo Pepler Unit for Biometry Stellenbosch University

22 September 2014

Principal component analysis (PCA)

 $\boldsymbol{\Sigma} = \boldsymbol{\mathsf{B}}\boldsymbol{\Lambda}\boldsymbol{\mathsf{B}}'$

Example:

$$\mathbf{\Sigma} = egin{bmatrix} 0.87 & -0.49 \ 0.49 & 0.87 \end{bmatrix} egin{bmatrix} 10 & 0 \ 0 & 3 \end{bmatrix} egin{bmatrix} 0.87 & 0.49 \ -0.49 & 0.87 \end{bmatrix}$$

The CPC model Identifying common eigenvectors

Covariance matrix estimation CPC discriminant analysis CPC biplots CPC regression

Common principal components (CPC)

 $\mathbf{\Sigma}_1 = \mathbf{B} \mathbf{\Lambda}_1 \mathbf{B}'$

 $\mathbf{\Sigma}_2 = \mathbf{B} \mathbf{\Lambda}_2 \mathbf{B}'$

Example:

$$\begin{split} \boldsymbol{\Sigma}_{1} &= \begin{bmatrix} 0.87 & -0.49 \\ 0.49 & 0.87 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0.87 & 0.49 \\ -0.49 & 0.87 \end{bmatrix} \\ \boldsymbol{\Sigma}_{2} &= \begin{bmatrix} 0.87 & -0.49 \\ 0.49 & 0.87 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} 0.87 & 0.49 \\ -0.49 & 0.87 \end{bmatrix} \end{split}$$

Simultaneous diagonalisation algorithms

• Flury-Gautschi (FG), (Flury and Gautschi, 1986)

$$\phi\left(\boldsymbol{L}_{1},\ldots,\boldsymbol{L}_{k};n_{1},\ldots,n_{k}
ight)=\prod_{i=1}^{k}rac{\left[\mathsf{det}\left(\mathsf{diag}\boldsymbol{L}_{i}
ight)
ight]^{n_{i}}}{\left[\mathsf{det}\left(\boldsymbol{L}_{i}
ight)
ight]^{n_{i}}}$$
 (1)

(2)

JADE package (Cardoso and Souloumiac, 1996)

$$\min\left(\sum_{i=1}^{k}\sum_{j=1}^{p}\sum_{\substack{h=1\\h\neq j}}^{p}l_{jhk}^{2}\right)$$

Stepwise CPC (Trendafilov, 2010)

- estimates eigenvectors sequentially
- ensures common eigenvectors have same rank order in all groups

The Vermont Oxford Network (VON) data

- Birth weight (kg)
- Apgar score at 1 min (0–10)
- Apgar score at 5 mins (0–10)
- Gestational age (weeks)
- Head circumference (cm)
- Temperature (°C)

Regions:

- South Africa $(n_1 = 2921)$
- Namibia ($n_2 = 120$)

Source: Wikipedia (https://en.wikipedia.org/wiki/ Neonatal_intensive_care_unit)

AIC and Chi-square methods (Flury, 1988)

Model	χ^2	df	$\frac{\chi^2}{df}$	AIC
Equality	5.99	1	5.99	85.77
Proportionality	10.09	5	2.02	81.78
CPC	2.06	1	2.06	81.69
CPC(4)	5.27	2	2.63	81.63
CPC(3)	12.87	3	4.29	80.37
CPC(2)	34.37	4	8.59	73.50
CPC(1)	15.13	5	3.03	47.13
Heterogeneity	-	_	-	42.00

Vector correlations (Krzanowski, 1979)

 Inspect vector correlations from pairwise combinations of all p eigenvectors from the two groups.

Simulated CPC(5) data: k=2 groups p = 5 variables $n_1 = n_2 = 200$ bootstrap reps = 1000

Bootstrap vector correlation distribution (BVD)

Consider two eigenvectors to be common if: median > 0.71

2

median $+ D \ge 1$

009 500 40 D Frequency 300 200 9 0 0.2 0.6 0.0 0.4 0.8 1.0 Absolute vector correlation

Vector correlation: Distribution of 1000 bootstrap replications

Bootstrap confidence regions (BCR)

Random vector correlations (RVC)

- adapted from Klingenberg and McIntyre (1998)
 - H_0 : pair of eigenvectors are *not* common

Theo Pepler tpepler@sun.ac.za Common principal components 12/33

Bootstrap hypothesis test (BootTest)

adapted from Klingenberg (1996)

 H_0 : pair of eigenvectors are common

Twice rotated data for the i^{th} group:

$$\boldsymbol{X}_{i}^{\star} = \boldsymbol{X}_{i} \boldsymbol{E}_{i} \boldsymbol{B}', \qquad i = 1, 2. \tag{3}$$

Ensemble test

Eigenvector pair considered equal (common) if majority vote of

- AIC
- BVD
- BCR
- RVC
- BootTest

indicates it to be so.

Simulation results (p = 5 variables) Number of common eigenvectors correctly identified (%)

	AIC	Chi ²	BootTest	RVC	BVD	BCR	Ensemble
Sample size							
n = 50	33.1	27.0	26.1	30.0	33.9	25.6	32.5
n = 100	34.2	30.7	26.4	32.2	36.1	29.4	35.0
n = 200	43.1	28.1	33.1	47.2	44.4	35.3	46.1
n = 500	43.3	34.8	46.1	53.3	56.4	49.4	54.2
n = 1000	45.8	34.1	57.2	62.5	62.8	58.1	63.1
Distribution							
Normal	51.5	32.4	49.3	58.2	62.5	51.5	59.3
Chi-squared	43.5	34.2	39.5	52.0	51.0	42.7	52.5
Multivariate t	24.7	26.2	24.5	25.0	26.7	24.5	26.7
Overall	39.9	31.0	37.8	45.1	46.7	39.6	46.2

Application to the VON data (regions) Ensemble test: 6 common eigenvectors

Covariance matrix estimators under the CPC model can:

- be less *biased* than when incorrectly assuming equality of the population covariance matrices, and
- be more *precise* than when incorrectly assuming that the population covariance matrices are unrelated.

CPC estimator (Flury, 1988)

- S_i : unbiased sample covariance matrix estimator for i^{th} group
- B : estimator of common eigenvector matrix

Estimator for Σ_i under the CPC model:

$$\boldsymbol{S}_{i(CPC)} = \boldsymbol{B} \boldsymbol{L}_i^0 \boldsymbol{B}', \tag{4}$$

where

$$\boldsymbol{L}_{i}^{0} = \operatorname{diag}(\boldsymbol{B}'\boldsymbol{S}_{i}\boldsymbol{B}). \tag{5}$$

Regularised CPC estimator

$$S_{i(CPC)}^{\star} = \alpha_i S_i + (1 - \alpha_i) S_{i(CPC)}, \qquad (6$$

where $\alpha_i \in [0; 1]$ is the shrinkage intensity parameter.

Use cross-validation to find the value for α_i minimising a modified version of the Frobenius matrix norm on the training and validation samples.

Covariance matrix shapes (95% confidence ellipses) k = 2 populations, p = 2 variables

Theo Pepler

tpepler@sun.ac.za

Common principal components 20/33

Simulation results

Mean standardised modified Frobenius values (smaller is better):

	Unbiased	CPC	CPC*	Pooled
Full CPC	0.269	0.372	0.192	0.792
Half of				
eigenvectors common	0.271	0.337	0.194	0.789
Few common				
eigenvectors	0.262	0.318	0.196	0.794
Unrelated				
covariance matrices	0.259	0.294	0.195	0.798

VON data: Namibia ($n_2 = 120$)

	0.87	0.62	(0.45	3.02	3.39	0.04
	0.62	4.48		2.30	3.31	2.88	-0.08
	0.45	2.30		2.18	2.75	2.21	-0.04
$S_2 \equiv$	3.02	3.31		2.75	15.37	13.45	-0.31
	3.39	2.88		2.21	13.45	15.70	0.05
	0.04	-0.0	8 –	-0.04	-0.31	0.05	0.50
		0.87	0.57	0.44	3.16	3.30	0.13
$oldsymbol{S}_{2(extsf{CPC})}^{\star} =$		0.57	4.15	2.25	2.92	2.58	0.07
		0.44	2.25	2.31	2.45	2.02	0.09
	;) —	3.16	2.92	2.45	15.98	13.46	0.21
		3.30	2.58	2.02	13.46	15.22	0.40
		0.13	0.07	0.09	0.21	0.40	0.58

CPC discriminant analysis

Allocate a new observation, x_{new} , to the first group if

$$-\frac{1}{2}x_{\text{new}}'(S_{1(\text{CPC})}^{-1}-S_{2(\text{CPC})}^{-1})x_{\text{new}}+(\bar{x}_{1}'S_{1(\text{CPC})}^{-1}-\bar{x}_{2}'S_{2(\text{CPC})}^{-1})x_{\text{new}} \ge c,$$
(7)

where

$$c = \frac{1}{2} \ln \left(\frac{|\boldsymbol{S}_{1(\text{CPC})}|}{|\boldsymbol{S}_{2(\text{CPC})}|} \right) + \frac{1}{2} (\bar{\boldsymbol{x}}_{1}' \boldsymbol{S}_{1(\text{CPC})}^{-1} \bar{\boldsymbol{x}}_{1} - \bar{\boldsymbol{x}}_{2}' \boldsymbol{S}_{2(\text{CPC})}^{-1} \bar{\boldsymbol{x}}_{2}), \quad (8)$$

otherwise allocate it to the second group.

Simulation results $n_1 = n_2, k = 2$ multivariate normal populations, p = 10 variables

			Misclassification error (%)				
Structure	n_i	QDA	CPC	CPC*	LDA		
$\Sigma_1 = \Sigma_2$	50	37.79	31.65	31.67	30.68		
	100	34.01	29.25	29.53	28.44		
	200	31.27	28.25	28.35	27.70		
CPC	50	22.96	16.50	16.81	30.43		
(similar	100	18.12	14.93	15.08	28.80		
rank orders)	200	15.89	14.13	14.26	27.49		
CPC	50	3.31	2.15	2.22	21.55		
(Opposite	100	2.41	1.95	1.97	18.31		
rank orders)	200	1.99	1.84	1.85	16.56		
Unrelated	50	8.66	8.14	6.94	32.94		
covariance	100	5.85	7.15	5.57	30.80		
matrices	200	4.89	6.95	4.92	29.76		

VON data: Regions (6 common eigenvectors)

Misclassification errors:

- QDA = 25.2%
- LDA = 25.4%
- CPC = 21.2%
- $CPC^{\star} = 22.9\%$

Biplots for grouped data

- overall quality of display
- between-group variation
- within-group variation
- representation of variables
 - adequacy
 - mean standard predictive error (MSPE), (Rui Alves, 2012)
- representation of observations
 - sample predictivities (Gower et al., 2011)

Swiss bank notes (Flury, 1988) Genuine notes ($n_1 = 100$), Forged notes ($n_2 = 100$)

CPC regression

Quality measures for 2D biplot of Bank Notes data

					Sample
	Overall	Within	Between	MSPE	predictivities
Pooled S	0.42	0.72	0.21	0.80	0.35
Pooled data	0.88	0.70	1.00	0.44	0.85
Flury	0.65	0.70	0.61	0.75	0.62
Stepwise CPC	0.35	0.71	0.10	0.75	0.31
JADE	0.44	0.71	0.26	0.79	0.38

CPC regression

$$Y = \beta_0 + \beta_1 Z_1 + \ldots + \beta_q Z_q + \epsilon, \qquad 1 \le q \le p, \tag{9}$$

where Z_j is the j^{th} common principal component,

$$Z_{j} = \mathbf{b}_{j1}X_{i1} + \mathbf{b}_{j2}X_{i2} + \dots + \mathbf{b}_{jp}X_{ip}, \qquad j = 1, \dots, p; i = 1, \dots, k.$$
(10)

Add dummy variables to design matrix to indicate group membership: Allows fitting regression models with different intercepts and/or partial slopes for the different groups.

CPC regression: Conclusions

- CPC and PC regression provide very similar fits
- regression on full set of CPCs gives same fit as OLS regression
- CPC is covariance matrix model: not aimed at predicting a response
- PLS regression will give better results than CPC

References

Cardoso, J.-F. and Souloumiac, A. (1996). Jacobi angles for simultaneous diagonalization. SIAM Journal on Matrix Analysis and Applications, 17(1):161–164.

Diaconis, P. and Efron, B. (1983). Computer-intensive methods in statistics. Scientific American, 248(5):116-130.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall.

Flury, B. (1988). Common Principal Components and Related Multivariate Models. Wiley, 1988.

Flury, B.N. and Gautschi, W. (1986). An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form. SIAM Journal on Scientific and Statistical Computing, 7(1):169–184.

Friedman, J.H. (1989). Regularized discriminant analysis. *Journal of the American Statistical Association*, 84(405):165–175.

Gower, J.C., Gardner-Lubbe, S. and Roux, N.L. (2011). Understanding Biplots. Wiley.

Hastie, T.J., Tibshirani, R.J. and Friedman, J.J.H. (2009). The elements of statistical learning. Springer-Verlag.

Johnson, R.A. and Wichern, D.W. (2002). Applied Multivariate Statistical Analysis. Prentice Hall.

Klingenberg, C.P. (1996). Multivariate allometry. NATO ASI SERIES A LIFE SCIENCES, 284:23-50.

Klingenberg, C.P. and McIntyre, G.S. (1998). Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. *Evolution*, 52(5):1363–1375.

References (continued)

Krzanowski, W.J. (1979). Between-groups comparison of principal components. *Journal of the American Statistical Association*, 74(367):703–707.

Rui Alves, M. (2012). Evaluation of the predictive power of biplot axes to automate the construction and layout of biplots based on the accuracy of direct readings from common outputs of multivariate analyses: 1. Application to principal component analysis. *Journal of Chemometrics*, 26(5):180–190.

Trendafilov, N.T. (2010). Stepwise estimation of common principal components. *Computational Statistics and Data Analysis*, 54(12):3446–3457.