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Principal component analysis (PCA)

Σ = BΛB′

Example:

Σ =

[
0.87 −0.49
0.49 0.87

] [
10 0
0 3

] [
0.87 0.49
−0.49 0.87

]
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Common principal components (CPC)

Σ1 = BΛ1B′

Σ2 = BΛ2B′

Example:

Σ1 =

[
0.87 −0.49
0.49 0.87

] [
10 0
0 3

] [
0.87 0.49
−0.49 0.87

]

Σ2 =

[
0.87 −0.49
0.49 0.87

] [
3 0
0 10

] [
0.87 0.49
−0.49 0.87

]
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Simultaneous diagonalisation algorithms
• Flury-Gautschi (FG), (Flury and Gautschi, 1986)

φ (L1, . . . ,Lk;n1, . . . , nk) =

k∏
i=1

[det (diagLi)]ni

[det (Li)]
ni

(1)

• JADE package (Cardoso and Souloumiac, 1996)

min

 k∑
i=1

p∑
j=1

p∑
h=1
h6=j

l2jhk

 (2)

• Stepwise CPC (Trendafilov, 2010)
• estimates eigenvectors sequentially
• ensures common eigenvectors have same rank order in all

groups
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The Vermont Oxford Network (VON) data

• Birth weight (kg)
• Apgar score at 1 min (0–10)
• Apgar score at 5 mins (0–10)
• Gestational age (weeks)
• Head circumference (cm)
• Temperature (◦C)

Regions:
• South Africa (n1 = 2921)
• Namibia (n2 = 120)

Source: Wikipedia
(https://en.wikipedia.org/wiki/
Neonatal intensive care unit)
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AIC and Chi-square methods (Flury, 1988)

Model χ2 df χ2

df AIC
Equality 5.99 1 5.99 85.77
Proportionality 10.09 5 2.02 81.78
CPC 2.06 1 2.06 81.69
CPC(4) 5.27 2 2.63 81.63
CPC(3) 12.87 3 4.29 80.37
CPC(2) 34.37 4 8.59 73.50
CPC(1) 15.13 5 3.03 47.13
Heterogeneity – – – 42.00
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Vector correlations (Krzanowski, 1979)

a′b = cos θ

• Inspect vector correlations from pairwise combinations of
all p eigenvectors from the two groups.
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Simulated
CPC(5) data:

k = 2 groups

p = 5 variables

n1 = n2 = 200

bootstrap
reps = 1000

Theo Pepler tpepler@sun.ac.za Common principal components 9/33



The CPC model
Identifying common eigenvectors

Covariance matrix estimation
CPC discriminant analysis

CPC biplots
CPC regression

Bootstrap vector correlation distribution (BVD)

Consider two
eigenvectors to be
common if:

1 median > 0.71

2 median +D ≥ 1
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Bootstrap confidence regions (BCR)

Theo Pepler tpepler@sun.ac.za Common principal components 11/33



The CPC model
Identifying common eigenvectors

Covariance matrix estimation
CPC discriminant analysis

CPC biplots
CPC regression

Random vector correlations (RVC)
• adapted from Klingenberg and McIntyre (1998)

H0 : pair of eigenvectors are not common
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Bootstrap hypothesis test (BootTest)
• adapted from Klingenberg (1996)

H0 : pair of eigenvectors are common

Twice rotated data for the ith group:

X?
i = XiEiB

′, i = 1, 2. (3)
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Ensemble test
Eigenvector pair considered equal (common) if majority vote of
• AIC
• BVD
• BCR
• RVC
• BootTest

indicates it to be so.
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Simulation results (p = 5 variables)
Number of common eigenvectors correctly identified (%)

AIC Chi2 BootTest RVC BVD BCR Ensemble
Sample size
n = 50 33.1 27.0 26.1 30.0 33.9 25.6 32.5
n = 100 34.2 30.7 26.4 32.2 36.1 29.4 35.0
n = 200 43.1 28.1 33.1 47.2 44.4 35.3 46.1
n = 500 43.3 34.8 46.1 53.3 56.4 49.4 54.2
n = 1000 45.8 34.1 57.2 62.5 62.8 58.1 63.1

Distribution
Normal 51.5 32.4 49.3 58.2 62.5 51.5 59.3
Chi-squared 43.5 34.2 39.5 52.0 51.0 42.7 52.5
Multivariate t 24.7 26.2 24.5 25.0 26.7 24.5 26.7
Overall 39.9 31.0 37.8 45.1 46.7 39.6 46.2
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Application to the VON data (regions)
Ensemble test: 6 common eigenvectors
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Covariance matrix estimators under the CPC model can:

• be less biased than when incorrectly assuming equality of
the population covariance matrices, and

• be more precise than when incorrectly assuming that the
population covariance matrices are unrelated.
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CPC estimator (Flury, 1988)
• Si : unbiased sample covariance matrix estimator for ith

group
• B : estimator of common eigenvector matrix

Estimator for Σi under the CPC model:

Si(CPC) = BL0
iB
′, (4)

where
L0
i = diag(B′SiB). (5)
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Regularised CPC estimator

S?i(CPC) = αiSi + (1− αi)Si(CPC), (6)

where αi ∈ [0; 1] is the shrinkage intensity parameter.

Use cross-validation to find the value for αi minimising a
modified version of the Frobenius matrix norm on the training
and validation samples.
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Covariance matrix shapes (95% confidence ellipses)
k = 2 populations, p = 2 variables
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Simulation results
Mean standardised modified Frobenius values (smaller is
better):

Unbiased CPC CPC? Pooled
Full CPC 0.269 0.372 0.192 0.792

Half of
eigenvectors common 0.271 0.337 0.194 0.789

Few common
eigenvectors 0.262 0.318 0.196 0.794

Unrelated
covariance matrices 0.259 0.294 0.195 0.798
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VON data: Namibia (n2 = 120)

S2 =


0.87 0.62 0.45 3.02 3.39 0.04
0.62 4.48 2.30 3.31 2.88 -0.08
0.45 2.30 2.18 2.75 2.21 -0.04
3.02 3.31 2.75 15.37 13.45 -0.31
3.39 2.88 2.21 13.45 15.70 0.05
0.04 −0.08 −0.04 −0.31 0.05 0.50



S?
2(CPC) =


0.87 0.57 0.44 3.16 3.30 0.13
0.57 4.15 2.25 2.92 2.58 0.07
0.44 2.25 2.31 2.45 2.02 0.09
3.16 2.92 2.45 15.98 13.46 0.21
3.30 2.58 2.02 13.46 15.22 0.40
0.13 0.07 0.09 0.21 0.40 0.58
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CPC discriminant analysis
Allocate a new observation, xnew, to the first group if

−1

2
x′new(S−11(CPC)−S

−1
2(CPC))xnew+(x̄′1S

−1
1(CPC)−x̄

′
2S
−1
2(CPC))xnew ≥ c,

(7)
where

c =
1

2
ln

( |S1(CPC)|
|S2(CPC)|

)
+

1

2
(x̄′1S

−1
1(CPC)x̄1 − x̄′2S

−1
2(CPC)x̄2), (8)

otherwise allocate it to the second group.
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Simulation results
n1 = n2, k = 2 multivariate normal populations, p = 10 variables

Misclassification error (%)
Structure ni QDA CPC CPC? LDA
Σ1 = Σ2 50 37.79 31.65 31.67 30.68

100 34.01 29.25 29.53 28.44
200 31.27 28.25 28.35 27.70

CPC 50 22.96 16.50 16.81 30.43
(similar 100 18.12 14.93 15.08 28.80
rank orders) 200 15.89 14.13 14.26 27.49
CPC 50 3.31 2.15 2.22 21.55
(Opposite 100 2.41 1.95 1.97 18.31
rank orders) 200 1.99 1.84 1.85 16.56
Unrelated 50 8.66 8.14 6.94 32.94
covariance 100 5.85 7.15 5.57 30.80
matrices 200 4.89 6.95 4.92 29.76
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VON data: Regions (6 common eigenvectors)

Misclassification
errors:
• QDA = 25.2%

• LDA = 25.4%

• CPC = 21.2%

• CPC? = 22.9%
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Biplots for grouped data
• overall quality of display
• between-group variation
• within-group variation
• representation of variables

• adequacy
• mean standard predictive error (MSPE), (Rui Alves, 2012)

• representation of observations
• sample predictivities (Gower et al., 2011)
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Swiss bank notes (Flury, 1988)
Genuine notes (n1 = 100), Forged notes (n2 = 100)
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Quality measures for 2D biplot of Bank Notes data

Sample
Overall Within Between MSPE predictivities

Pooled S 0.42 0.72 0.21 0.80 0.35
Pooled data 0.88 0.70 1.00 0.44 0.85
Flury 0.65 0.70 0.61 0.75 0.62
Stepwise CPC 0.35 0.71 0.10 0.75 0.31
JADE 0.44 0.71 0.26 0.79 0.38
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CPC regression

Y = β0 + β1Z1 + . . .+ βqZq + ε, 1 ≤ q ≤ p, (9)

where Zj is the jth common principal component,

Zj = bj1Xi1+bj2Xi2+· · ·+bjpXip, j = 1, . . . , p; i = 1, . . . , k.
(10)

Add dummy variables to design matrix to indicate group
membership: Allows fitting regression models with different
intercepts and/or partial slopes for the different groups.
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CPC regression: Conclusions
• CPC and PC regression provide very similar fits
• regression on full set of CPCs gives same fit as OLS

regression
• CPC is covariance matrix model: not aimed at predicting a

response
• PLS regression will give better results than CPC
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