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Overview

1)  What are common principal components (CPCs)?

2)  Identifying the CPCs

3)  Simultaneous diagonalisation methods

4)  Applications of the CPC model



  

1)  What are CPCs?

How can variance structures of two (or more) groups differ?

Univariate case:

● Homoscedastic or heteroscedastic (nothing in between)

Multivariate case:

● Number of different ways covariance matrices can differ (Flury 
1988):

1)  Equality

2)  Proportionality

3)  Common principal components

4)  Partial common principal components

5)  Heteroscedasticity 1≠2

1=2

1=2



  



  

1=B 1 B '

2=B 2 B '

Principal component analysis (PCA):

Common principal components (CPC):

=B B '

1=B1 1 B1 '

2=B2 2 B2 '

B1=[ b1 ... bq :bq11 ...b p 1 ]

B2=[b1 ...bq : bq1 2  ...bp 2]

Partial common principal components (CPC(q)):

where



  

●   CPC(p-1) implies CPC(p) due to 

orthogonality of components

●   CPC(q) only possible when p > 2

●   Moving down in Flury's hierarchy

-->  more parameters to estimate



  



  

2)  Identifying the CPCs

●   The        statistics are not independent, and assume normality of the 

k populations (Flury 1988)

●   AIC not a formal hypothesis test (Flury 1988)

●   Similar criticism also raised by Phillips & Arnold 1999, and Waldmann & 

Anderson 2000

2



  

Different approach: Krzanowski (1979)
Geometrically: dot product of two unit vectors a and b = cosine of 

angle between the two vectors in p-dimensional space.

a ' b=cos

Do pairwise comparison of the dot products from all 

combinations of the p principal components (i.e. the 

eigenvectors) from k groups.



  

        Dot products
 2 5  0.999
 1 3  0.996
 5 2  0.995
 3 1  0.991
 4 4  0.990
 3 4  0.135
 4 1  0.135
 5 3  0.090
 1 2  0.090
 4 2  0.039
 5 4  0.039
 2 1  0.024
 3 5  0.022
 4 5  0.018
 2 3  0.018
 1 5  0.018
 2 4  0.015
 1 4  0.008
 1 1  0.006
 4 3  0.004

Simulated CPC data, k = 2, p = 5, n = 1000

cos−1
0.95=18.2 degrees

Arbitrary cut-off point:



  

         Dot products
1 1   0.996
2 2   0.992
5 5   0.912
3 4   0.765
4 3   0.699
4 4   0.636
3 3   0.576
5 3   0.410
4 5   0.323
3 5   0.252
3 2   0.115
2 3   0.100
3 1   0.082
1 4   0.077
2 4   0.067
4 2   0.037
1 3   0.033
2 5   0.029
4 1   0.024
1 2   0.022

Simulated CPC(2) data, k = 2, p = 5, n = 1000

cos−10.9119=24.2degrees



  

        Dot products
 4 1    0.812
 3 2    0.775
 5 5    0.763
 2 3    0.729
 1 4    0.657
 1 2    0.622
 5 3    0.548
 2 4    0.538
 4 5    0.483
 3 4    0.443
 2 1    0.338
 1 1    0.309
 4 3    0.305
 3 1    0.295
 3 5    0.283
 5 4    0.260
 2 5    0.239
 1 5    0.218
 5 1    0.211
 1 3    0.196

Simulated heterogeneous data, k = 2, p = 5, n = 1000

cos−1
0.8117=35.7degrees



  

      Dot products
5 6    0.843

cos−1
0.8431=32.5 degrees



  

Simulated 

CPC data:

k = 2

p = 5

n = 1000

bootstrap 

reps = 1000



  

Simulated 

CPC(2) 

data:

k = 2

p = 5

n = 1000

bootstrap 

reps = 1000

?



  

Simulated 

heterogene

ous data:

k = 2

p = 5

n = 1000

bootstrap 

reps = 1000



  

Iris data 

(two 

groups):

k = 2

p = 4

n = 50

bootstrap 

reps = 1000

?



  

Banknotes 

data:

k = 2

p = 6

(only 4 

shown)

n = 100

bootstrap 

reps = 1000

?



  

3)  Simultaneous diagonalisation methods

●   FG algorithm (Flury 1988)

●   Stepwise CPC (Trendafilov 2010)

●   rjd function (Cardoso & Souloumiac 1996)

-->  implemented in JADE package in R

Compared these with:

●  Eigenvectors of the pooled covariance matrix

●  Eigenvectors of the covariance matrix of the pooled data

min i:=
det diag  i

det  i

min∑
i=1

p

∑
ji

p

ij
2



  

4)  Applications of the CPC model
Advantages the CPC model might provide:
●   more stable estimates than when incorrectly assuming 
heterogeneity of covariance matrices
●   more accurate estimates than when incorrectly assuming 
equality of covariance matrices

Possible applications of the CPC model:

1)  Biplots

2)  Regression

3)  Better estimator of

4)  Discriminant analysis



=S1−SCPC



  



  



  

Overall quality of the display (Gower, Le Roux & Lubbe 2010)

Let       contain the data from all k groups, with the columns of           

centred to have zero means, and letting                                , the 

total variation in the data can be partitioned as follows:

”Total goodness of fit” =

Biplot goodness of fit

|| X ||2=tr X ' X

|| X ||2=|| X [r] ||
2
|| X− X [r] ||

2

|| X [r] ||
2

|| X ||2
=

∑
i=1

r

i

∑
i=1

p

i

X X



  

Within group variation

Letting          contain the data from the ith group, with the columns of  

        centred to have zero mean (for the ith group), the quality of 

representation of the within group variation can be measured as 

follows:

Biplot goodness of fit

”Within groups goodness of fit” =

X i

∑
i=1

k

|| X i [r] ||
2

∑
i=1

k

|| X i ||
2

=

∑
j=1

k

∑
i=1

r

 ji

∑
j=1

k

∑
i=1

p

 ji

X i



  

Adequacy of the variables (Gower, Le Roux & Lubbe 2010)

●  Quality of representation of the variables in the biplot

Letting         contain the first r columns of orthogonal projection matrix 

       (with unit length row vectors), the adequacy of the p variables in 

the r-dimensional subspace will be given by

Mean adequacy over all p variables =

Biplot goodness of fit

r
p

B
B[ r]

diag B[ r ]B[ r ] ' 



  



  



  

Setosa Versicolor

Virginica

Source:  Wikimedia Commons 

(Anderson's iris data)



  



  



  



  



  

Questions?
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