Common principal components Theo Pepler Genetics Department Stellenbosch University

26 August 2011

Overview

- 1) What are common principal components (CPCs)?
- 2) Identifying the CPCs
- 3) Simultaneous diagonalisation methods
- 4) Applications of the CPC model

1) What are CPCs?

How can variance structures of two (or more) groups differ?

Univariate case:

• Homoscedastic or heteroscedastic (nothing in between)

Multivariate case:

• Number of different ways covariance matrices can differ (Flury 1988):

1) Equality
$$\Sigma_1 = \Sigma_2$$

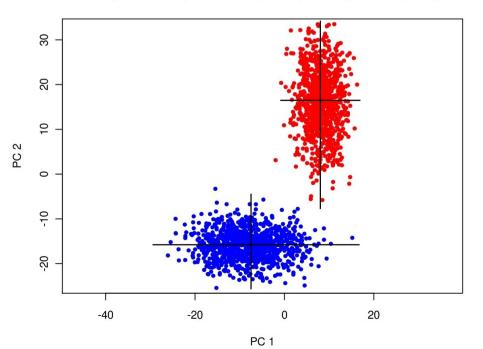
2) Proportionality $\Sigma_1 = \rho \Sigma_2$

- 3) Common principal components
- 4) Partial common principal components
- 5) Heteroscedasticity $\Sigma_1 \neq \Sigma_2$

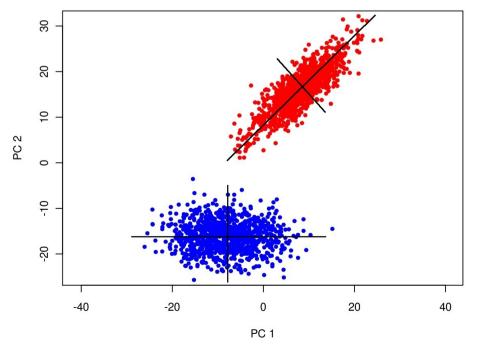
 F_{Q}

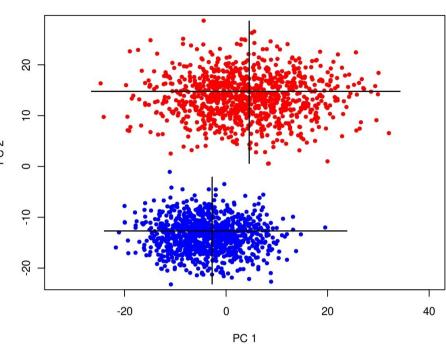
PC 1

Flury's hierarchy: Common principal components (CPC)



Flury's hierarchy: Heterogeneity





Flury's hierarchy: Proportionality

Principal component analysis (PCA):

$\Sigma = B \Lambda B'$

Common principal components (CPC):

$$\Sigma_1 = B\Lambda_1 B'$$
$$\Sigma_2 = B\Lambda_2 B'$$

Partial common principal components (CPC(q)):

$$\Sigma_{1} = B_{1} \Lambda_{1} B_{1}' \quad \text{where} \quad B_{1} = [b_{1} \dots b_{q} : b_{q+1(1)} \dots b_{p(1)}]$$

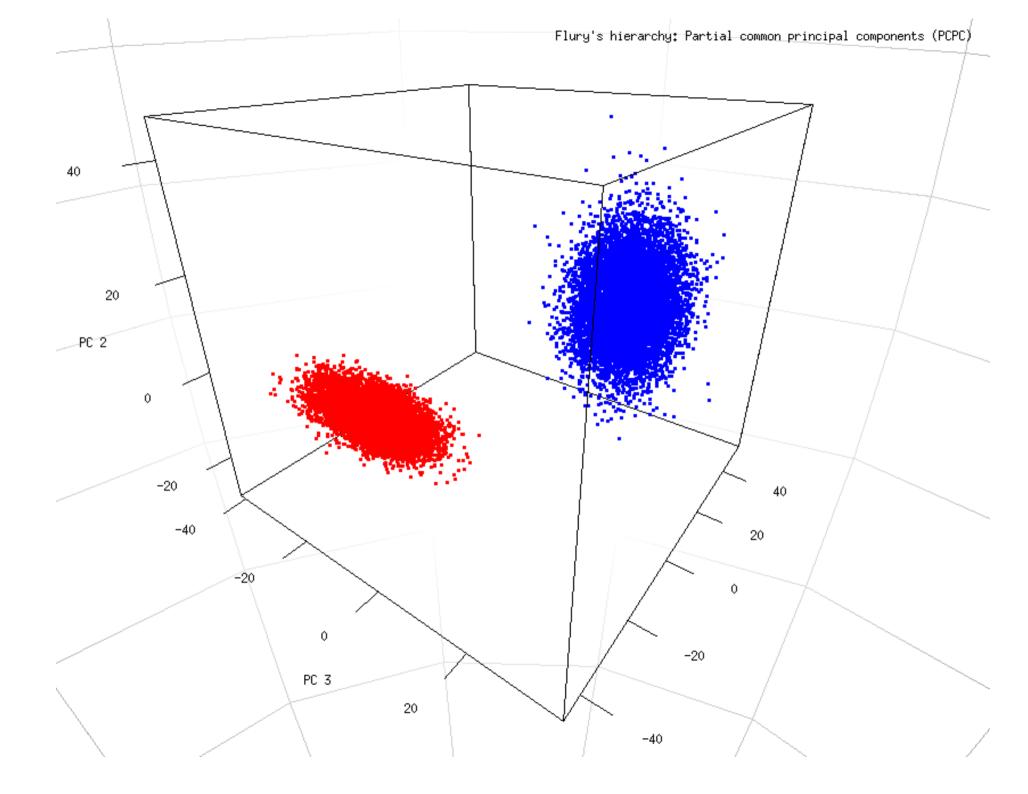
$$\Sigma_{2} = B_{2} \Lambda_{2} B_{2}' \quad B_{2} = [b_{1} \dots b_{q} : b_{q+1(2)} \dots b_{p(2)}]$$

• CPC(*p*-1) implies CPC(*p*) due to orthogonality of components

• CPC(q) only possible when p > 2

Moving down in Flury's hierarchy

--> more parameters to estimate



2) Identifying the CPCs

Table 7.9. Decomposition of X_{total}^2 in Head Dimension Example (k = 2, p = 6)

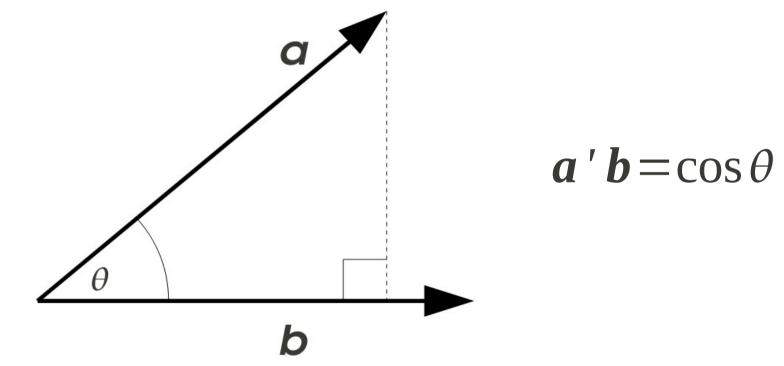
Model		X ²	df	X ²	AIC for
Higher	Lower			df	Higher Model
Equality	Proportionality	42.29	1	42.29	89.78
Proportionality	CPC	25.66	5	5.13	49.49
CPC	CPC(1)	15.12	10	1.51	33.82*
CPC(1)	Unrelated	6.70	5	1.34	38.70
Unrelated					42.0
Equality	Unrelated	89.78	21		

*Minimum AIC.

- The χ^2 statistics are *not independent*, and *assume normality* of the *k* populations (Flury 1988)
- AIC not a formal hypothesis test (Flury 1988)
- Similar criticism also raised by Phillips & Arnold 1999, and Waldmann & Anderson 2000

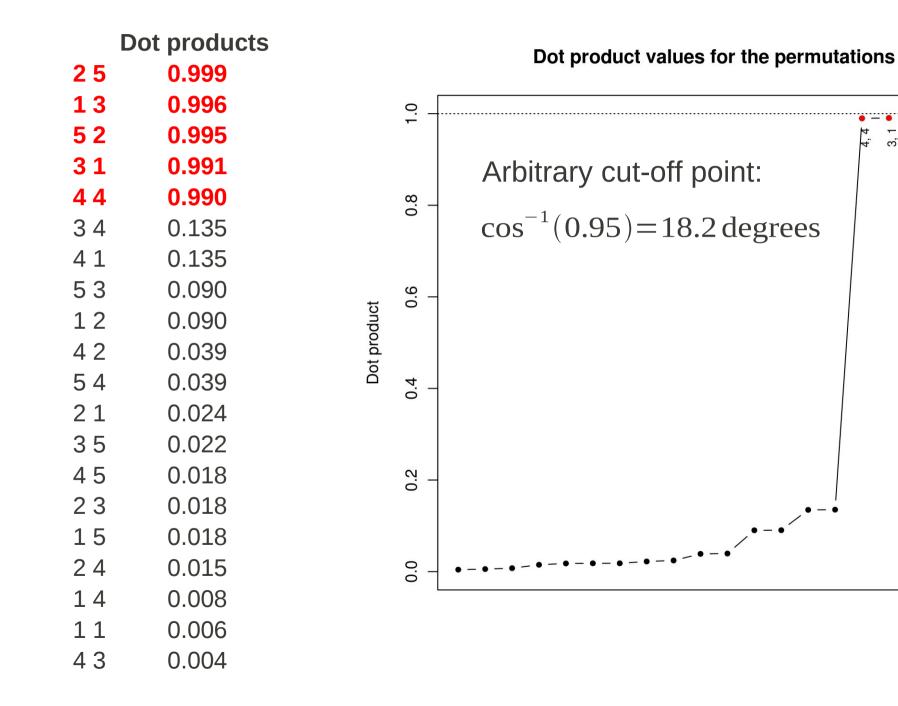
Different approach: Krzanowski (1979)

Geometrically: dot product of two unit vectors \boldsymbol{a} and \boldsymbol{b} = cosine of angle between the two vectors in *p*-dimensional space.

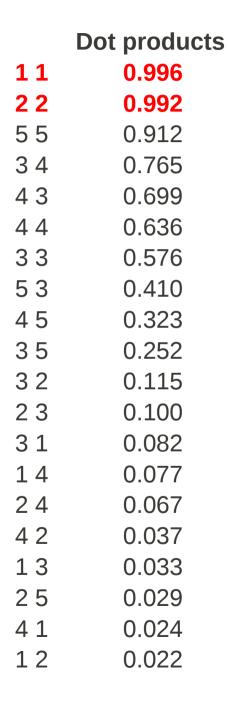


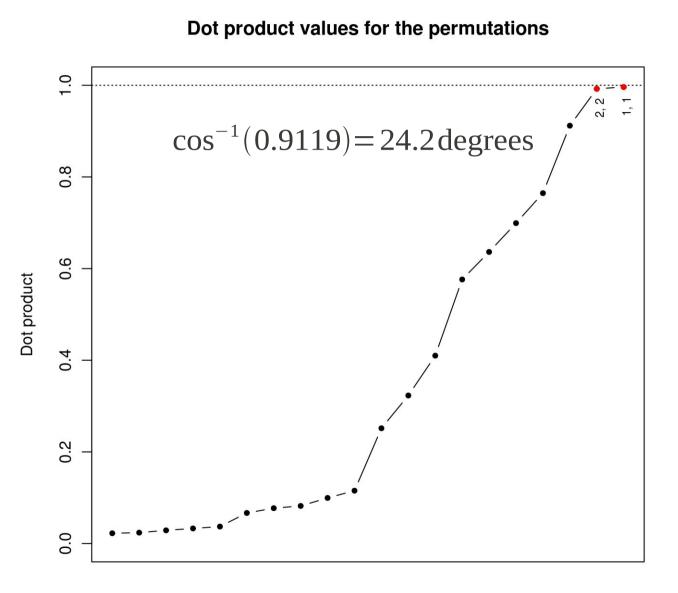
Do pairwise comparison of the dot products from all combinations of the *p* principal components (i.e. the eigenvectors) from *k* groups.

Simulated CPC data, k = 2, p = 5, n = 1000

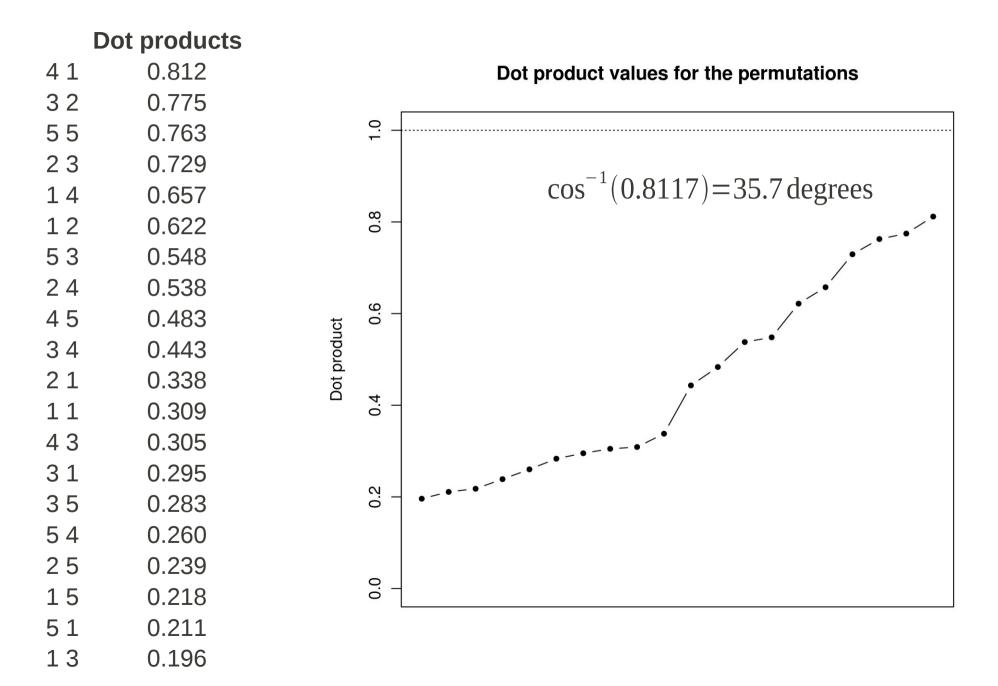


Simulated CPC(2) data, *k* = 2, *p* = 5, *n* = 1000

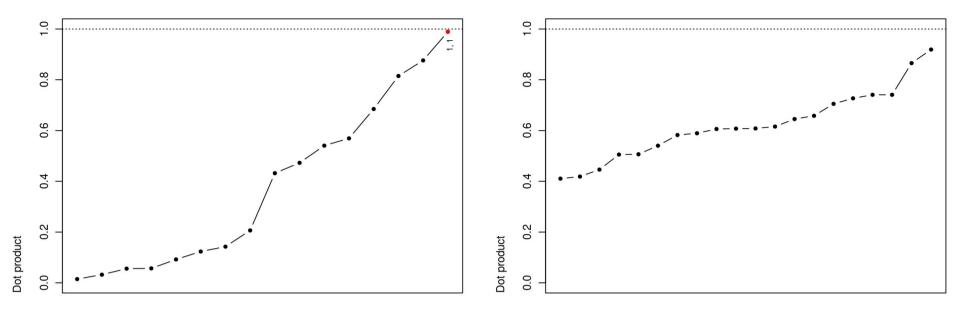




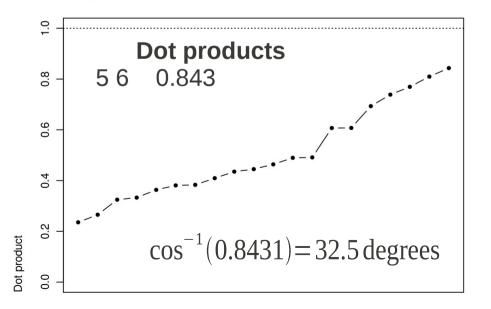
Simulated heterogeneous data, k = 2, p = 5, n = 1000



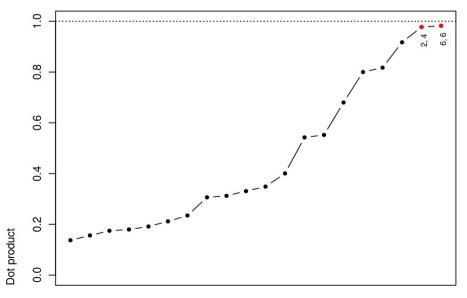
Dot product values for the permutations: Iris data (3 groups)

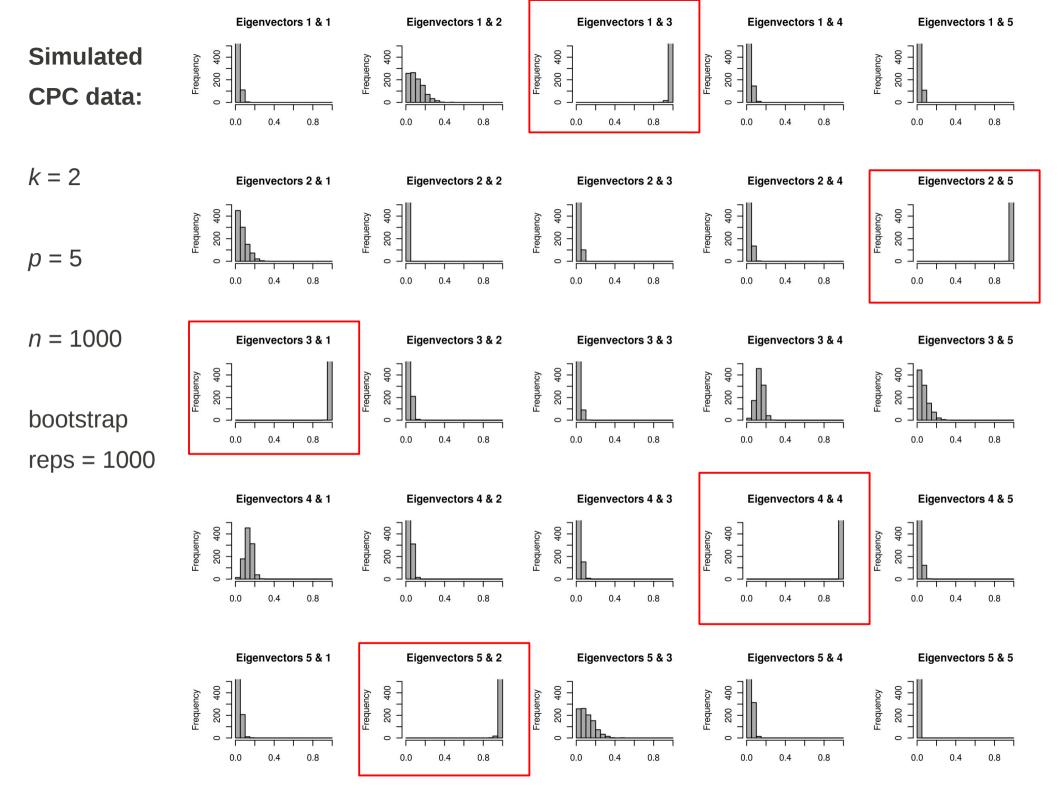


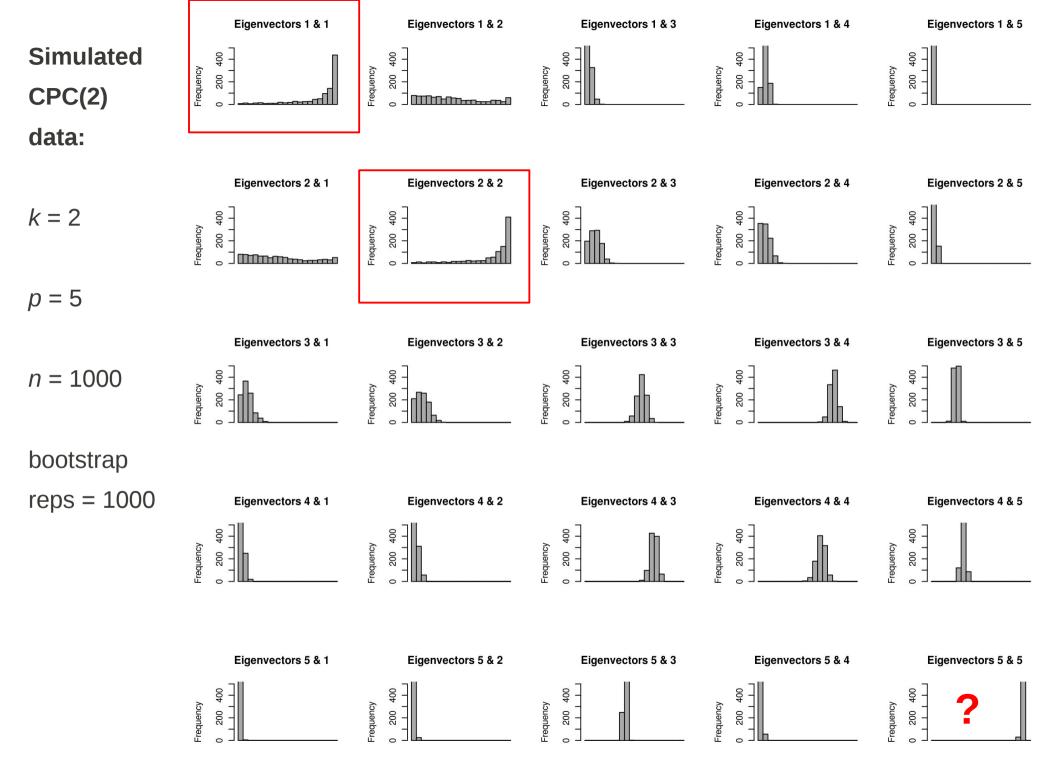
Dot product values for the permutations: Swiss heads data

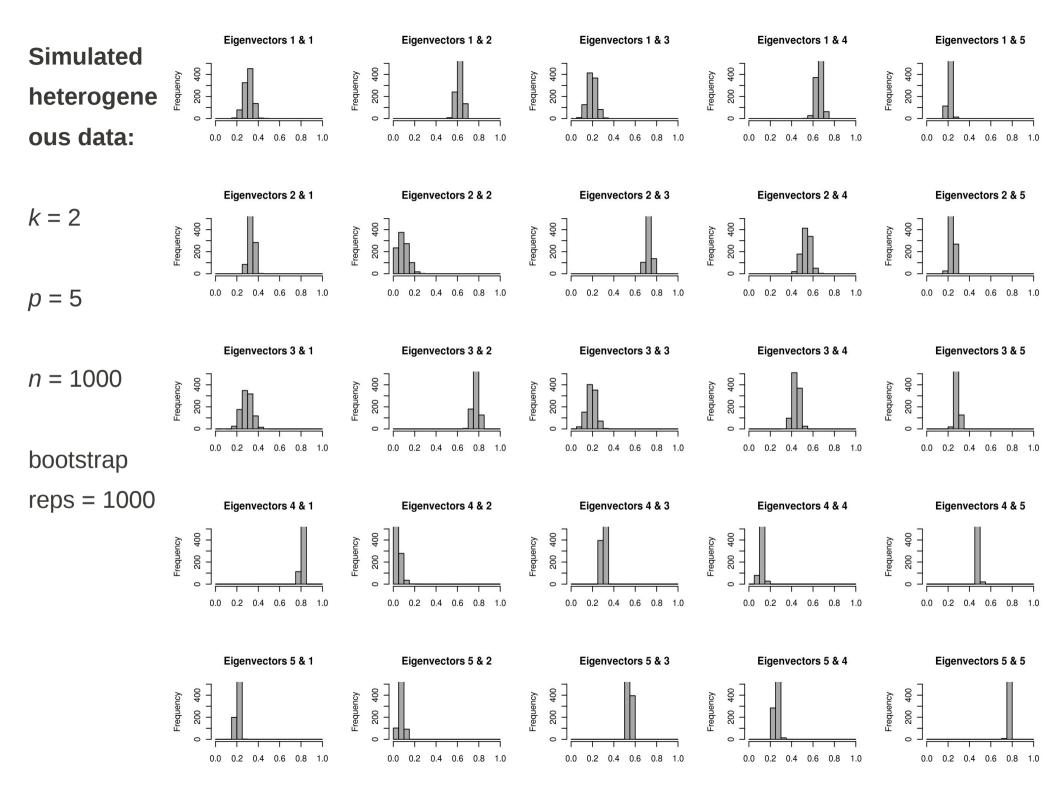


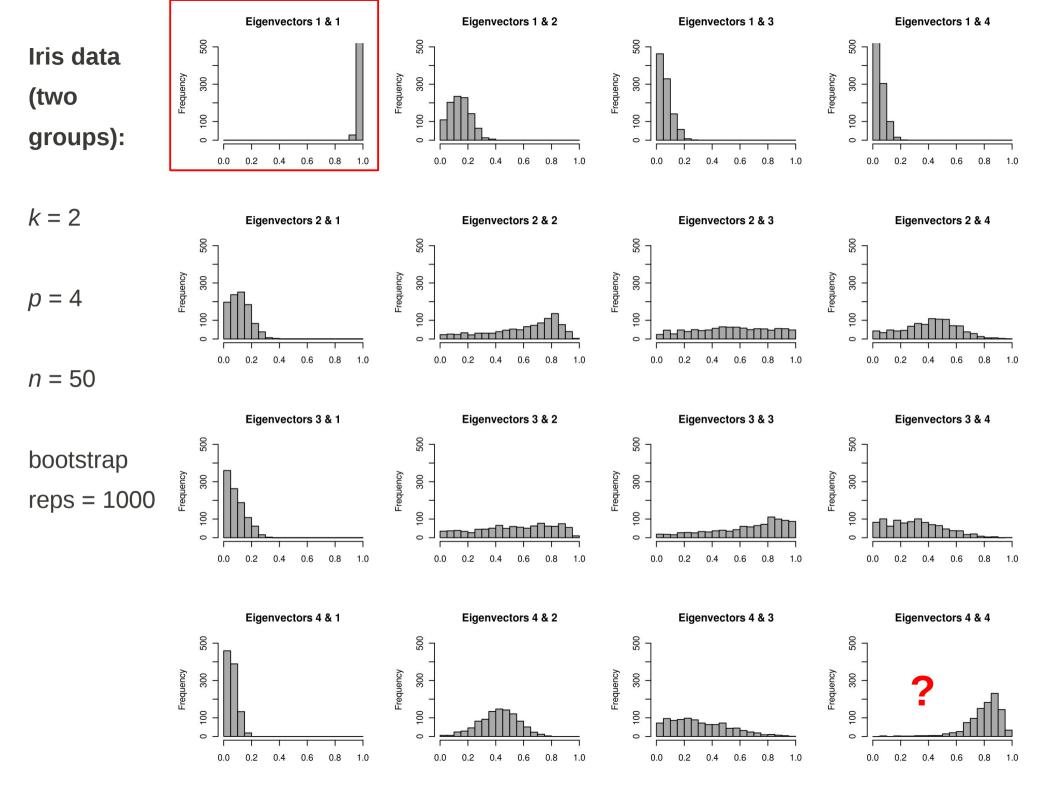
Dot product values for the permutations: Banknotes data

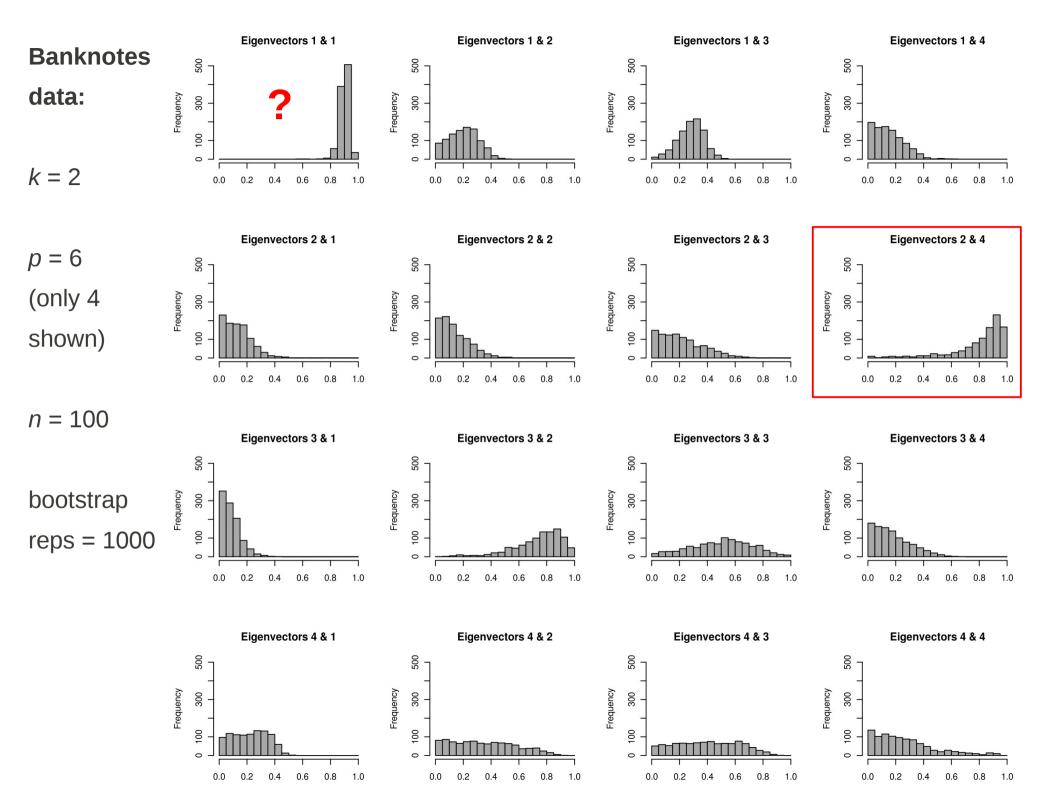












3) Simultaneous diagonalisation methods

• FG algorithm (Flury 1988)

$$\min \phi(\boldsymbol{\Lambda}_{i}) := \frac{\det(\operatorname{diag}(\boldsymbol{\Lambda}_{i}))}{\det(\boldsymbol{\Lambda}_{i})}$$

- **Stepwise CPC** (Trendafilov 2010)
- rjd function (Cardoso & Souloumiac 1996)

--> implemented in JADE package in R $min \sum_{j=1}^{p} \sum_{ij=1}^{p} \lambda_{ij}^{2}$

Compared these with:

- Eigenvectors of the pooled covariance matrix
- Eigenvectors of the covariance matrix of the pooled data

4) Applications of the CPC model

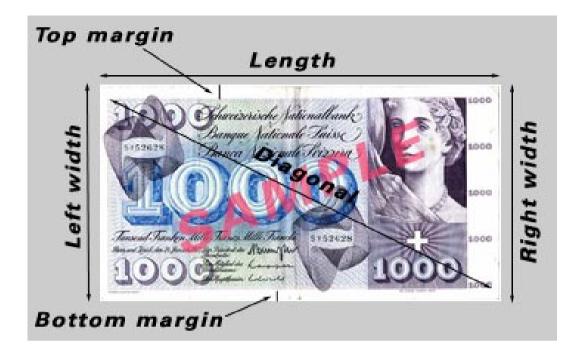
Advantages the CPC model might provide:

- *more stable estimates* than when incorrectly assuming heterogeneity of covariance matrices
- *more accurate estimates* than when incorrectly assuming equality of covariance matrices

Possible applications of the CPC model:

- 1) Biplots
- 2) Regression
- 3) Better estimator of Σ

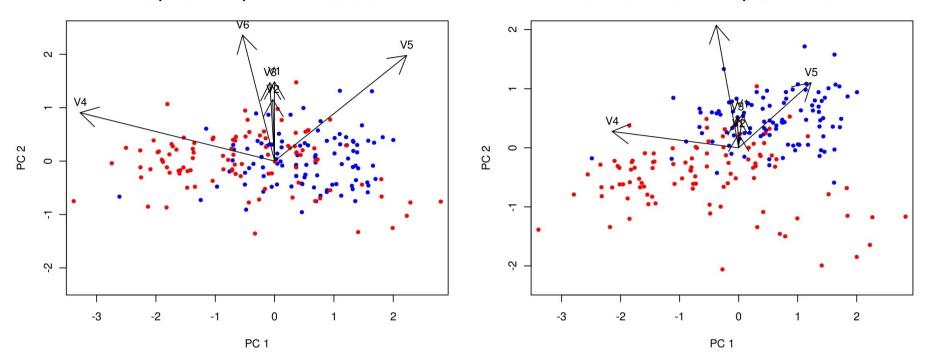
$$\hat{\boldsymbol{\Sigma}} = \alpha \boldsymbol{S} + (1 - \alpha) \boldsymbol{S}_{CPC}$$



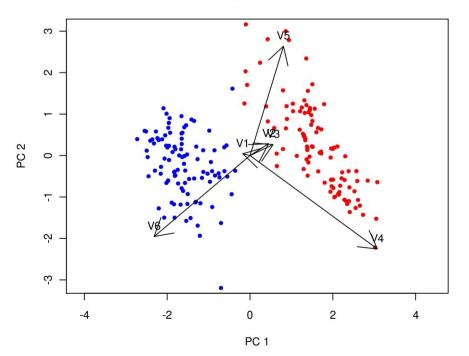
- X_1 : Length of the bank note,
- X_2 : Height of the bank note, measured on the left,
- X_3 : Height of the bank note, measured on the right,
- X_4 : Distance of inner frame to the lower border,
- X_5 : Distance of inner frame to the upper border,
- X_6 : Length of the diagonal.

Stepwise CPC biplot: Bank notes data

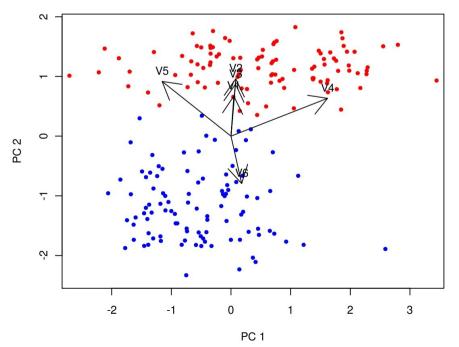
Pooled covariance matrix biplot: Bank notes data



Pooled data biplot: Bank notes data



Flury CPC biplot: Bank notes data



Biplot goodness of fit

Overall quality of the display (Gower, Le Roux & Lubbe 2010) Let X contain the data from all k groups, with the columns of X centred to have zero means, and letting $||X||^2 = tr(X'X)$, the total variation in the data can be partitioned as follows:

$$\|X\|^{2} = \|\hat{X}_{[r]}\|^{2} + \|X - \hat{X}_{[r]}\|^{2}$$

"Total goodness of fit" =

$$\frac{\|\boldsymbol{X}_{[\mathbf{r}]}\|^{2}}{\|\boldsymbol{X}\|^{2}} = \frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{i=1}^{p} \lambda_{i}}$$

Biplot goodness of fit

Within group variation

Letting X_i contain the data from the *i*th group, with the columns of X_i centred to have zero mean (for the *i*th group), the quality of representation of the *within group variation* can be measured as follows:

"Within groups goodness of fit" =

$$\frac{\sum_{i=1}^{k} \|\hat{X}_{i[r]}\|^{2}}{\sum_{i=1}^{k} \|X_{i}\|^{2}} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{r} \lambda_{ji}}{\sum_{j=1}^{k} \sum_{i=1}^{p} \lambda_{ji}}$$

Biplot goodness of fit

Adequacy of the variables (Gower, Le Roux & Lubbe 2010)

• Quality of representation of the variables in the biplot

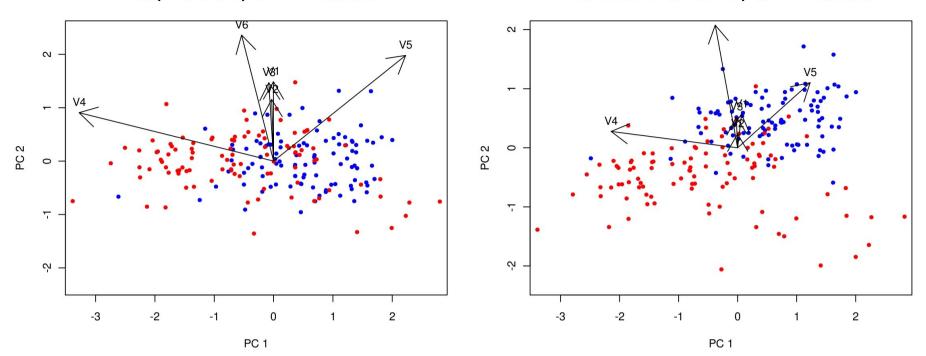
Letting $B_{[r]}$ contain the first *r* columns of orthogonal projection matrix B (with unit length row vectors), the adequacy of the *p* variables in the *r*-dimensional subspace will be given by

$$diag(\mathbf{B}_{[r]}\mathbf{B}_{[r]}')$$

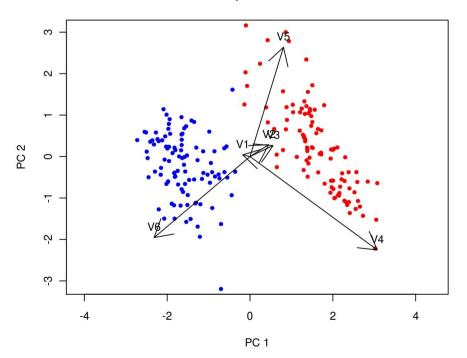
Mean adequacy over all p variables = $\frac{r}{p}$

Stepwise CPC biplot: Bank notes data

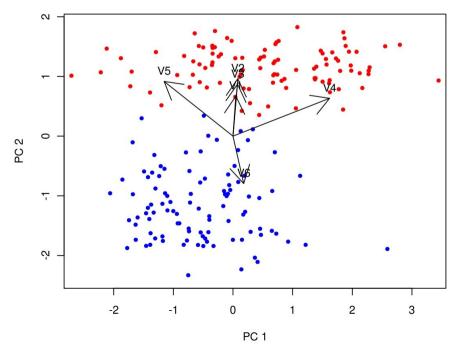
Pooled covariance matrix biplot: Bank notes data



Pooled data biplot: Bank notes data

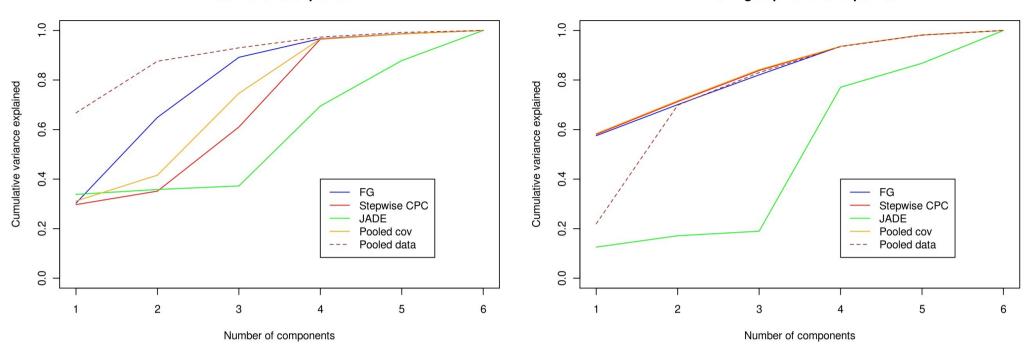


Flury CPC biplot: Bank notes data

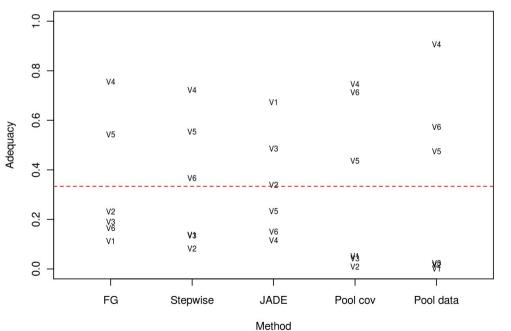


Total variance explained

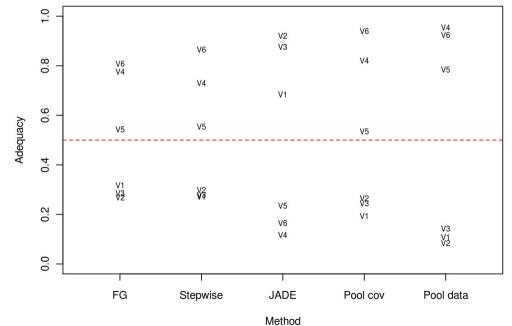
Within group variance explained



Adequacy of variables in 2D biplot



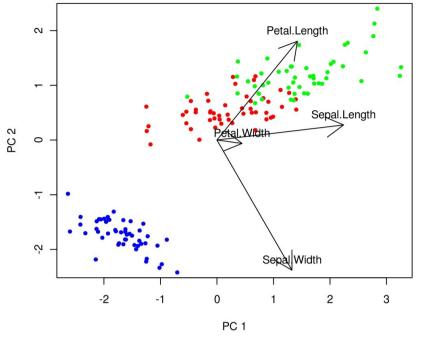
Adequacy of variables in 3D biplot



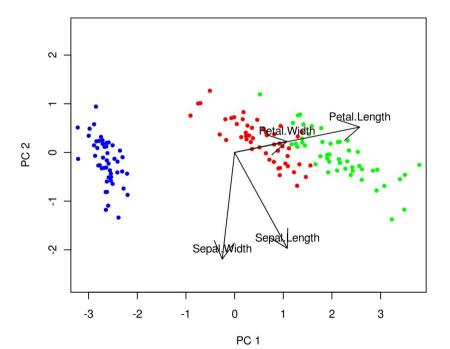
Versicolor

<u>Source</u>: Wikimedia Commons (Anderson's iris data)

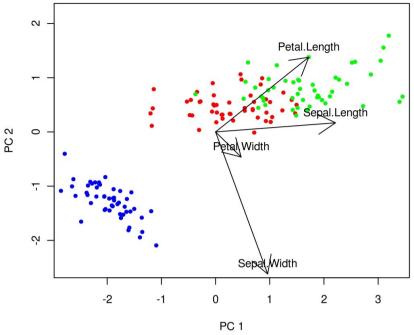
Virginica

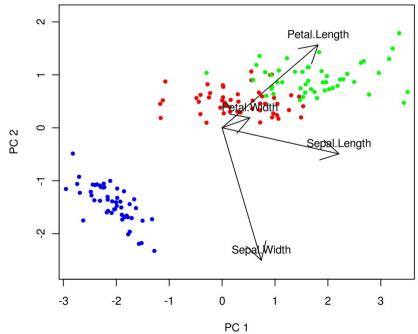


Pooled data biplot: Iris data (three groups)



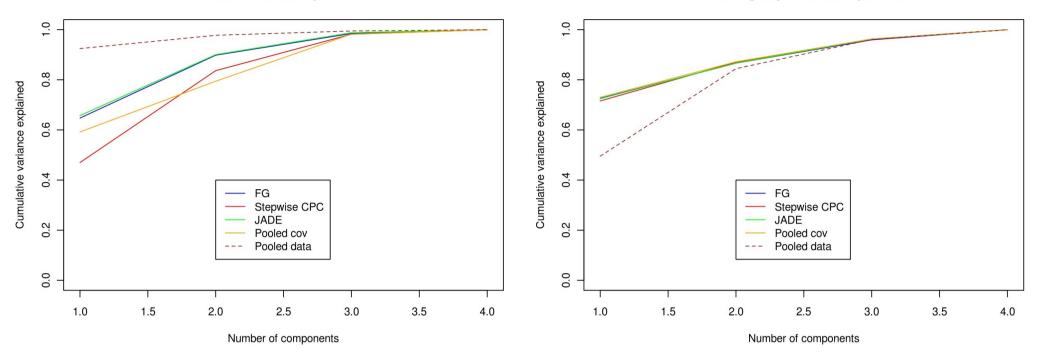
Pooled covariance matrix biplot: Iris data (three groups)



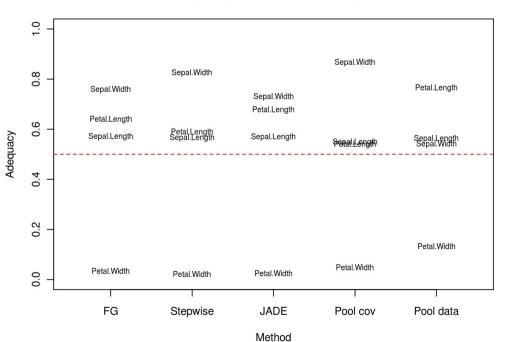


Total variance explained

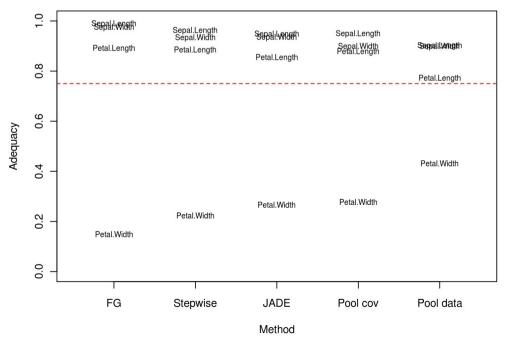
Within group variance explained



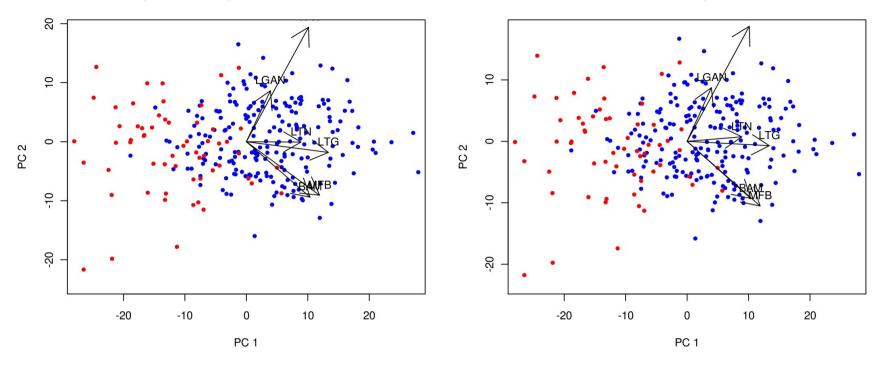
Adequacy of variables in 2D biplot



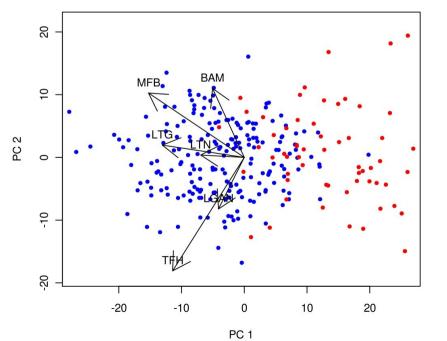
Adequacy of variables in 3D biplot



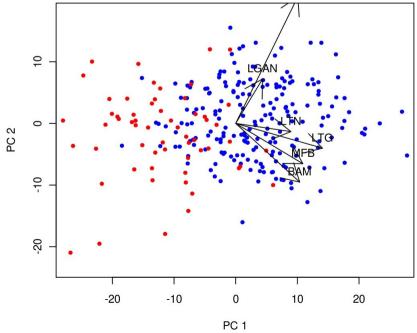
Pooled covariance matrix biplot: Swiss heads data



Pooled data biplot: Swiss heads data

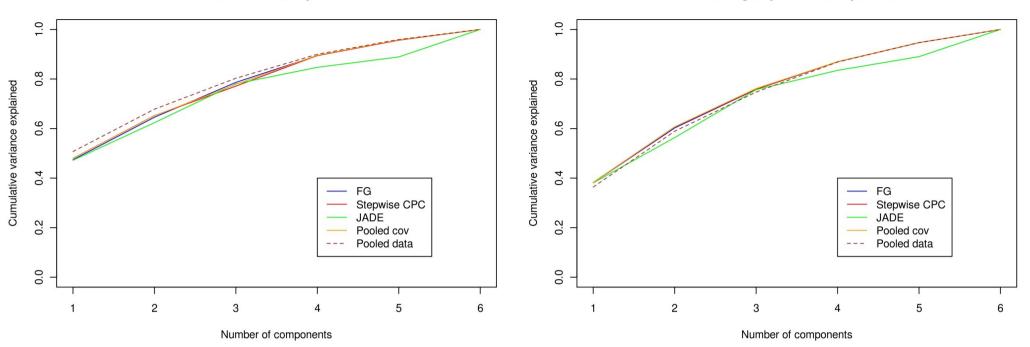


Flury CPC biplot: Swiss heads data

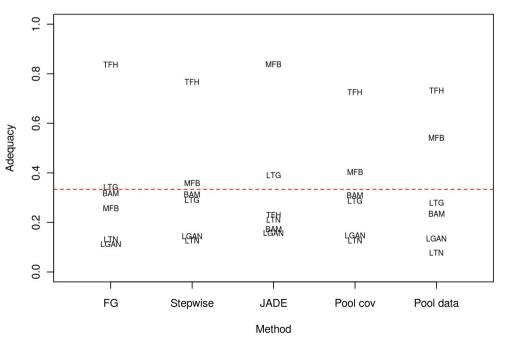


Total variance explained

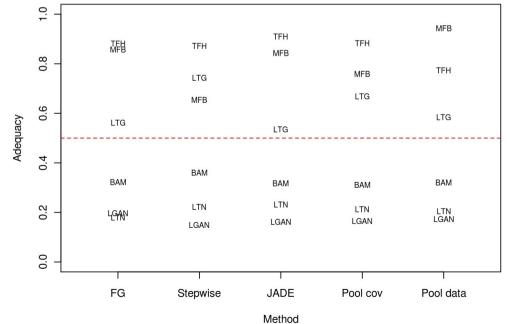
Within group variance explained



Adequacy of variables in 2D biplot



Adequacy of variables in 3D biplot



Questions?