Comparison of some methods for the identification of common eigenvectors

Theo Pepler Unit for Biometry University of Stellenbosch

8 November 2012

The CPC model

Principal component analysis (PCA):

 $\Sigma = B\Lambda B'$

Common principal components (CPC):

 $\Sigma_1 = \overline{B \Lambda_1 B'}$

 $\Sigma_2 = B \Lambda_2 B'$

Partial common principal components (CPC(q)):

 $egin{array}{lll} \Sigma_1 = oldsymbol{B}_1 \Lambda_1 oldsymbol{B}_1' & ext{where} & oldsymbol{B}_1 = [oldsymbol{b}_1 \dots oldsymbol{b}_q : oldsymbol{b}_{q+1(1)} \dots oldsymbol{b}_{p(1)}] \ \Sigma_2 = oldsymbol{B}_2 \Lambda_2 oldsymbol{B}_2' & oldsymbol{B}_2 = [oldsymbol{b}_1 \dots oldsymbol{b}_q : oldsymbol{b}_{q+1(2)} \dots oldsymbol{b}_{p(2)}] \end{array}$

Flury's (1988) methods

Lower		dſ	$\frac{X^2}{df}$	AIC for Higher Model
Proportionality	42.29	1	42.29	89.78
CPC	25.66	5	5.13	49.49
CPC(1)	15.12	10	1.51	33.82*
Unrelated	6.70	5	1.34	38.70
				42.0
Unrelated	89.78	21		
	Proportionality CPC CPC(1) Unrelated Unrelated	Proportionality 42.29 CPC 25.66 CPC(1) 15.12 Unrelated 6.70 Unrelated 89.78	Proportionality 42.29 1 CPC 25.66 5 CPC(1) 15.12 10 Unrelated 6.70 5 Unrelated 89.78 21	Proportionality 42.29 1 42.29 CPC 25.66 5 5.13 CPC(1) 15.12 10 1.51 Unrelated 6.70 5 1.34 Unrelated 89.78 21

- χ^2 statistics not *independent*, and depend on *multivariate* normality assumption
- AIC not formal hypothesis test

Vector correlations

Different approach (Krzanowski 1979)

 Inspect vector correlations from pairwise combinations of all p eigenvectors from the k groups

Vector correlations

Simulated CPC(2) data: k = 2, p = 5, n = 200

Vector correlations

Simulated CPC(2) data: k=2 $p = \underline{5}$ n = 200bootstrap reps = 1000

BVD method

Bootstrap vector correlation distribution (BVD) method

Vector correlations: 1000 bootstrap replications 400 D 300 requency 200 0 0 0.0 0.2 0.4 0.6 0.8 1.0

Absolute vector correlation

BCR method

Bootstrap confidence regions (BCR) method

(a) Not common

(b) Common

Klingenberg & McIntyre (1998)

Random vector correlations (RVC) method

 H_0 : pair of eigenvectors are *not* common

Klingenberg (1996, 1998)

Bootstrap hypothesis test (BootTest)

H_0 : pair of eigenvectors are common

Ensemble method

Majority vote on the number of common eigenvectors from

- Flury's AIC
- BVD method
- BCR method
- Klingenberg's RVC method

Ties: choose higher model in Flury's hierarchy

Simulation study

Simulation study (12000 runs)

- Groups: *k* = 2
- Variables: p = 5
- Sample sizes: n = 50, 100, 200, 500, 1000
- Eigenvalues: poorly / moderately / well separated
- Normality: multivariate normal / non-normal
- Covariance structures: CPC, CPC(3), CPC(1), heterogeneous

Simulation study

Number of common eigenvectors correctly identified (%)

	AIC	χ^2	BVD	BCR	RVC	BootTest	Ensemble
Sample size							
n = 50	36	28	35	26	35	13	40
n = 100	41	27	38	27	43	10	47
n = 200	47	31	48	42	56	7	58
n = 500	50	32	64	65	69	6	71
n = 1000	51	34	74	74	74	4	76
Data							
Normal	51	33	55	49	59	7	62
Non-normal	39	28	48	44	52	9	55
Total	45	31	51	47	56	8	59

All methods fared worse with non-normal data than with normal data.

Simulation study

Number of common eigenvectors correctly identified (%)

	AIC	χ^2	BVD	BCR	RVC	BootTest	Ensemble
Eigenvalue separation							
Poor	25	26	26	25	23	18	27
Moderate	51	31	57	49	63	5	67
Good	59	35	72	66	80	1	82
Covariance							
structure							
CPC	45	26	52	<mark>98</mark>	55	13	86
CPC(3)	34	21	28	29	44	17	37
CPC(1)	44	45	46	29	61	2	49
Heterogeneous	57		80	30	63	0	61
Total	45	31	51	47	56	8	59

Swiss heads data

Swiss heads data: k = 2, p = 6

Sample sizes: $n_1 = 200, n_2 = 59$

Eigenvalues:

- Males: 66.3, 34.4, 19.6, 14.3, 13.0, 6.8
- Females: 73.5, 59.6, 42.0, 28.0, 15.6, 10.9 (well separated in both groups)

Normality:

• Shapiro-Wilk test: Males (p = 0.0003), Females (p = 0.0008)

Swiss heads data

Vector correlations: Swiss heads data

Verdict on the number of common eigenvectors?

- AIC: 4
- BVD: 0
- BCR: 6
- RVC: 3
- Ensemble: 6

Conclusions

- increased accuracy with the non-parametric methods
- Flury's χ^2 and Klingenberg's BootTest perform poorly—should rather not be used
- using an ensemble of the best methods gives best performance
- larger sample sizes needed to estimate eigenvectors accurately

Sources

- P. Diaconis and B. Efron. Computer-intensive methods in statistics. Sci. Am.; (United States), 248(5): 116–130, 1983.
- B. Efron and R. Tibshirani. An introduction to the bootstrap. Monographs on Statistics and Applied Probability. Chapman & Hall, 1993.
- B. Flury. Common principal components and related multivariate models. Wiley series in probability and mathematical statistics. Wiley, 1988.
- C. P. Klingenberg. *Multivariate allometry*. NATO ASI SERIES A LIFE SCIENCES, 284: pp. 23–50, 1996.
- C. P. Klingenberg and G. S. McIntyre. *Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods.* Evolution, 52(5): pp. 1363–1375, 1998.
- W. J. Krzanowski. *Between-groups comparison of principal components*. Journal of the American Statistical Association, 74(367): pp. 703–707, 1979.