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What are common principal components (CPCs)?

What are common principal components (CPCs)?

How can variance structures of two (or more) groups differ?
Univariate case:

@ Homoscedastic or heteroscedastic (nothing in between)
Multivariate case:
@ Number of different ways covariance matrices can differ (Flury
1988):

o Equality Zl = 22

© Proportionality X1 = pX,

© Common principal components

@ Partial common principal components
© Heterogeneity
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What are common principal components (CPCs)?

Principal component analysis (PCA):
3 = BAB'
Common principal components (CPC):
¥, = BAB
¥, = BAB’

Partial common principal components (CPC(q)):

21 = Bll\lBll where Bl = [b1 e bq . bq+1(1) PN bp(l)]
X, = BoA;B) By =[b1...bg:bgi1(0)...by2)]
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What are common principal components (CPCs)?

Advantages the CPC model might provide:

@ more stable estimates than when incorrectly assuming
heterogeneity of covariance matrices

@ more accurate estimates than when incorrectly assuming
equality of covariance matrices
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Identifying the CPCs

Identifying the CPCs

Table 7.9. Decomposition of X2, in Head Dimension Example (k =2,p = 6)

X2

Model X oodr AIC for
Higher Lower df Higher Modecl
Equality Proportionality ~ 42.29 1 42.29 89.78
Proportionality CpPC 25.66 S 5.13 49.49
CPC CPC(1) 15.12 10 1.51 33.82%
CPC(1) Unrelated 6.70 5 1.34 38.70
Unrelated - 420
Equality Unrelated 89.78 21

*Minimum AIC.

@ The x? statistics are not independent and assume normality of
the k populations

@ The AIC is not a formal hypothesis test
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Identifying the CPCs

Different approach (Krzanowski 1979)
Geometrically: dot product of two unit vectors a and b = cosine of
the angle between the two vectors in p-dimensional space.

a’b = cos @

@ Do pairwise comparisons of the dot products from all
combinations of the p principal components from k groups.
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Identifying the CPCs

Simulated CPC data, k=2, p=5, n=200
@ Arbitrary cut-off point: cos™1(0.95) = 18.2 degrees
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Identifying the CPCs
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Identifying the CPCs

Simulated CPC(2) data, k =2, p =5, n =200
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Identifying the CPCs

Eigenvectors 141 Eigenvectors 142 Eigenvectors 143 Eigenvectors 1 &4 Eigenvectors 145
P& P g P E P8 P g
g8 £8 I]] £Eg g8 [m]:L £g
° o © ™ 1 i i o T
00 02 04 06 08 10 00 02 04 08 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 08 08 10

Simulated

CPC(2) dat ' ' " "

7 8 7 8 z § 7§ v g

LV WL W Pim,__ |I
A e e B | e T d R e e i e e e | D e e e |
k 2 00 02 04 08 08 10 00 02 04 08 08 10 00 02 04 08 08 10 00 02 04 08 08 10 00 02 04 08 08 10
1 Eigenvectors 383 Eigenvectors 3& 4 Eigenvectors 3& 5

8 5 & 58 8 5§

Y 2 g - Y - Y

p= 5 g8 E R g8 g8 ik LR

00 02 04 06 08 10 00 02 04 08 08 10 00 02 04 08 08 10 00 02 04 08 08 10 00 02 04 08 08 10

n =200 ' ' ) ’ ' ’

Al e e B ! i e e e | A o s e e | il e e S ! Rl e e e e e |

bootstrap
reps = 1000 1 ER— Eigenectors 583 igemectorss 44 igenectors 585

58 7 8 8 v 8 5§
[ [ [ [ [
g8 n g8 ] g8 g8
el el © Ee———— ol ©
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Theo Pepler Genetics Department Stellenbosch U On the app principal components in biplots



Simultaneous diagonalisation methods

Simultaneous diagonalisation methods

e FG algorithm (Flury 1988)

_ __ det(diag(A;))
ming(N\;) := W

o Stepwise CPC (Trendafilov 2010)
o rjd/JADE (Cardoso & Souloumiac 1996)

P P
in 3"
i=1 j>i
Compared these with:

@ Eigenvectors of the pooled covariance matrix

@ Eigenvectors of the covariance matrix of the pooled data
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Application of the CPC model in biplots

Application of the CPC model in biplots

Swiss bank notes data:
X1 : Length of the bank note,

Top margin X, Height of the bank note, measured on the left,

X5 : Height of the bank note, measured on the right,

$ -

3 = . .

3 3 X, : Distance of inner frame to the lower border,
- e

2 £

~ E X5 Distance of inner frame to the upper border,

| P L 1 L b .
Bottom m..—g.-,,/ Xg: Length of the diagonal.
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Application of the CPC model in biplots

Biplot goodness of fit

Overall quality of the display (Gower, Lubbe & Le Roux
2011)

Letting X contain the data from all k groups, with the columns of
X centred, and ||X]||2 = tr(X’X), the total variation in the data can
be partitioned as follows:

[1X[12 = (|l + 11X = X2

||)A([r]||2 DR

HXH2 N ?:1 Ai

Total goodness of fit =
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Application of the CPC model in biplots

Biplot goodness of fit

Within group variation

Letting X; contain the data from the it" group, with the columns
of X; centred per group, the quality of representation of the within
group variation can be measured as follows:

S k r
Zf:l HX[r]H2 . Zj:l Zi:l Aji

Within groups goodness of fit = =

SELIXIE S R
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Application of the CPC model in biplots

Swiss bank notes data: k=2, p=6, n= 100

Total variance explained Within group variance explained
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Application of the CPC model in biplots

Simulated CPC data: k=2, p=5, n=200

Total variance explained Within group variance explained
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Application of the CPC model in biplots

Simulated CPC(2) data: k =2, p=15, n= 200

Total variance explained Within group variance explained
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Conclusions

Conclusions

@ Eigenvectors of the covariance matrix of the pooled data
provide the simplest and best quality display for grouped data
in 2D or 3D biplots

@ Preliminary work also indicates that the axis predictivities
(quality of representation of the variables) of the pooled data
biplot are higher than for CPC biplots

@ Eigenvectors of the pooled covariance matrix and the CPC
solutions provide similar quality biplot displays

@ CPC solutions are more useful for maximising the variation
within groups than the variation between groups
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Conclusions
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