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Purpose

To investigate whether the use of the regularised common principal component
(CPC) estimators (for the covariance matrices of two groups) in the quadratic
discriminant function can improve the misclassification error rate, compared to
ordinary quadratic discriminant analysis (QDA) and linear discriminant analysis
(LDA).

Common principal components (CPC) model (Flury, 1988)

Spectral decomposition of two covariance matrices (Σ1, Σ2):

Σ1 = βΛ1β
′ Σ2 = βΛ2β

′

The covariance matrices have the same eigenvectors (columns of β), but different
eigenvalues (diagonal elements of Λ1 and Λ2). The common eigenvector matrix can
be estimated with the Flury-Gautschi (or another) algorithm.

Regularised CPC estimator

Let
I Si : p × p unbiased sample covariance matrix estimator for i th group, i = 1, 2
I B : estimator of modal matrix, β

Estimator of Σi under the CPC model (Flury, 1988):

Si(CPC ) = BL0
i B
′, (1)

where
L0

i = diag(B′SiB). (2)

Regularised CPC estimator of Σi :

S?i(CPC ) = αiSi + (1− αi)Si(CPC ), (3)

where αi ∈ [0; 1] is the shrinkage intensity parameter. An appropriate value for αi

is estimated using cross-validation, by dividing the original sample for the i th

group r times randomly into a 70% training set and a 30% validation set, and
performing the following procedure:

For r = 1, . . . , 100 replications

Estimate S
(r)
i(TRAIN) (unbiased estimator)

and S
(r)
i(CPC ) (CPC estimator)

Estimate S
(r)
i(VALID) (unbiased estimator)

Find α
(r)
i which minimises

‖
[
α

(r)
i S

(r)
i(TRAIN) + (1− α(r)

i )S
(r)
i(CPC )

]
− S

(r)
i(VALID) ‖F ?, (4)

where

‖ Σ̂−Σ ‖F ?=

√√√√ p∑
j=1

p∑
h≤j

(σ̂jh − σjh)2, j , h = 1, . . . , p. (5)

is a modified version of the Frobenius matrix norm.

Estimator of the shrinkage intensity parameter for the i th group:

α̂i =

∑
r α

(r)
i

r
. (6)

CPC discriminant analysis (k = 2 populations)

Allocate a new observation, xnew, to the first group if

− 1

2
x′new(S−1

1(CPC) − S−1
2(CPC))xnew + (x̄′1S

−1
1(CPC) − x̄′2S

−1
2(CPC))xnew ≥ c, (7)

where

c =
1

2
ln

(
|S1(CPC)|
|S2(CPC)|

)
+

1

2
(x̄′1S

−1
1(CPC)x̄1 − x̄′2S

−1
2(CPC)x̄2), (8)

otherwise allocate it to the second group. Si(CPC) is the CPC estimator for the
covariance matrix of the i th group as defined in (1). To perform regularised CPC
discriminant analysis, replace Si(CPC) in (7) and (8) with the regularised
estimator, S?i(CPC ), defined in (3).

Ordinary CPC discrimination and regularised CPC discrimination are referred to
as CPC and CPC?, respectively, in the presentation of the simulation results (see
the box labelled “Simulation study”).

Covariance matrix shapes (95% confidence ellipses)
k = 2 populations, p = 2 variables
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Simulation study

Simulation results for samples of equal sizes drawn from k = 2 multivariate
normally distributed populations with p = 10 variables. Each of the values in the
table were calculated from 1000 simulation runs.

Misclassification error (%)
Structure ni QDA CPC CPC? LDA
Equal population 50 37.79 31.65 31.67 30.68
covariance matrices 100 34.01 29.25 29.53 28.44

200 31.27 28.25 28.35 27.70
Common eigenvectors with 50 22.96 16.50 16.81 30.43
Similar rank orders in the 100 18.12 14.93 15.08 28.80
two covariance matrices 200 15.89 14.13 14.26 27.49
Common eigenvectors with 50 3.31 2.15 2.22 21.55
Opposite rank orders in the 100 2.41 1.95 1.97 18.31
two covariance matrices 200 1.99 1.84 1.85 16.56
Unrelated population 50 8.66 8.14 6.94 32.94
covariance matrices 100 5.85 7.15 5.57 30.80

200 4.89 6.95 4.92 29.76

Conclusion

Both ordinary and regularised CPC discrimination outperform QDA and LDA
when there are common eigenvectors in two population covariance matrices. The
improvement in misclassification error rate is most pronounced when the common
eigenvectors have opposite rank orders in the covariance matrices.
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