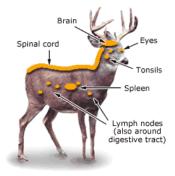
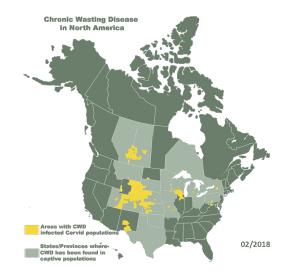
A spatial network model of deer populations in Great Britain to inform surveillance and control strategies for Chronic Wasting Disease

Theo Pepler

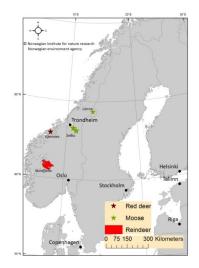
EPIC — Scottish Government's Centre of Expertise on Animal Disease Outbreaks


July 12, 2018

Chronic Wasting Disease (CWD)


- Transmissible spongiform encephalopathy (TSE) affecting cervid species
- Most plausible route for CWD spread: ingestion of contaminated forage/water
- Prions excreted in faeces, saliva, urine and blood; survives in the environment for several years

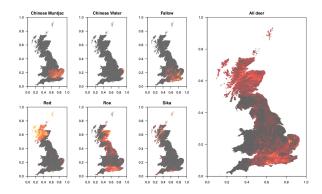
Prion accumulation in organs


Source: Utah Division of Wildlife Resources, https://wildlife.utah.gov/diseases/cwd/

Endemic to regions of North America

Source: Chronic Wasting Disease Alliance, http://cwd-info.org

First cases in Europe: Norway 2016


3

Source: Norwegian Institute for Nature Research

- 1. Investigate spatial structure in British deer populations
- 2. Inform planning of targeted surveillance
- 3. Inform control strategies for Chronic Wasting Disease in the event of disease incursion

Deer density data

Estimated deer densities based on relative likelihood of presence scores derived from presence/absence data (2005–2015)

・ロト ・ 雪 ト ・ ヨ ト

э

Method: similar to that described in Croft et al. (2017)

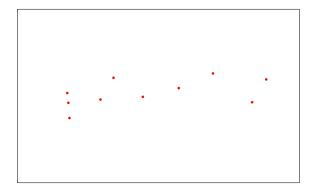
(Limited) Tracking data

Available only for five red deer herds in Cairngorms National Park

Modelling approach

- 1. Simulate deer herd locations to approximate density estimates
- 2. Estimate pairwise herd contact probability (direct and indirect) based on location and spread
- 3. Analyse constructed network representation of deer population

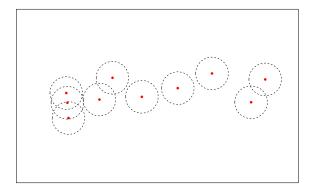
- network metrics
- disease simulation model (future)


Let \boldsymbol{x} be a two-dimensional random vector containing latitude and longitude coordinates.

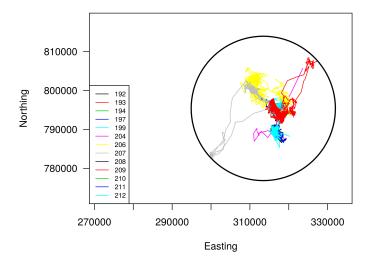
Let u(x) be a function indicating (estimated) animal densities across the landscape.

Define $h(x) = u(x)^c$ as the likelihood surface according to which we will simulate deer herd locations. Value of *c* could be optimised according to some loss function. We used c = 1 for illustration.

Placement of deer herds

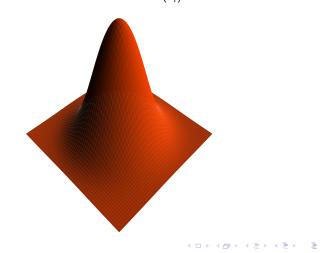

Random placement according to likelihood surface: $h(x) = u(x)^{c}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

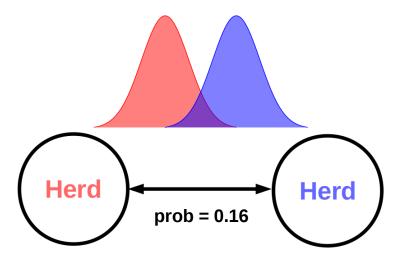

Home range areas

Assume circular home ranges

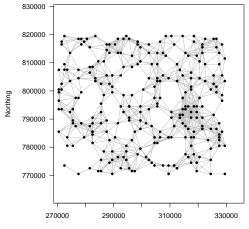
Use tracking data to inform home range size


Invercauld: Red deer (2003/2004)

◆□> ◆□> ◆三> ◆三> ● 三 のへの


Home range occupancy probability

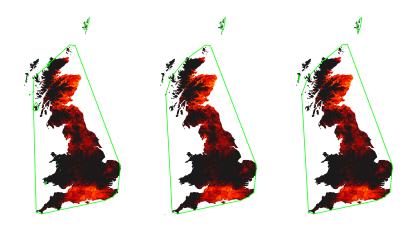
- Assume bivariate Gaussian distribution
- Assume spread inversely related to deer density (as proxy for habitat suitability): σ(x_i) = 1/h(x_i)^m


Pairwise contact probabilities

Contact probability determined by degree of kernel overlap. Result: network representation of deer herds

Constructed network (example)

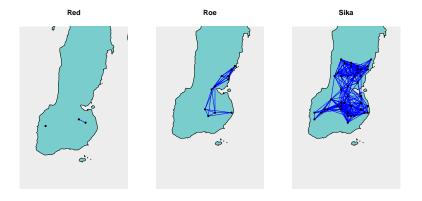
Simulated red deer herd locations in Cairngorms National Park area (showing only edges with probability \geq 0.5)


Easting

(日)、(四)、(E)、(E)、(E)

Components in simulated red deer network

Components in simulated roe deer network



Sampling edges

Identify more probable infection clusters within larger roe deer network

Question: What do deer populations in Campbeltown area look like?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Need more/better data:

- tracking data only available for red deer
- deer herd size distribution
- inter-species transmission rate of CWD
- inter-species contact probability
- seasonal behaviour and migration

No upper or lower limits enforced on herd home range sizes.

Potential future directions?

- Developed flexible framework which can be useful for study of other wildlife populations.
- Can incorporate data on natural barriers for deer movement—and thus disease spread—such as rivers, mountain ranges, fences, etc.
- Can combine constructed deer networks with farmed cattle/sheep/pig movement network data to study disease spread across multiple networks.

Acknowledgements

Collaborators

Rowland Kao, University of Edinburgh Jason Matthiopoulous, University of Glasgow Justin Irvine, James Hutton Institute Simon Croft, Animal & Plant Health Agency Graham C. Smith, Animal & Plant Health Agency

Advice

Kate Searle, Centre for Ecology & Hydrology

Funding

Scottish Government Rural and Environment Science and Analytical Services Division (RESAS) Department for Environment Food & Rural Affairs (Defra)